Metamath Proof Explorer


Theorem divrec2

Description: Relationship between division and reciprocal. (Contributed by NM, 7-Feb-2006)

Ref Expression
Assertion divrec2
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( ( 1 / B ) x. A ) )

Proof

Step Hyp Ref Expression
1 divrec
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) )
2 simp1
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC )
3 reccl
 |-  ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC )
4 3 3adant1
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC )
5 2 4 mulcomd
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( 1 / B ) ) = ( ( 1 / B ) x. A ) )
6 1 5 eqtrd
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( ( 1 / B ) x. A ) )