Metamath Proof Explorer


Theorem divreci

Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divcl.3
|- B =/= 0
Assertion divreci
|- ( A / B ) = ( A x. ( 1 / B ) )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divcl.3
 |-  B =/= 0
4 1 2 divreczi
 |-  ( B =/= 0 -> ( A / B ) = ( A x. ( 1 / B ) ) )
5 3 4 ax-mp
 |-  ( A / B ) = ( A x. ( 1 / B ) )