Step |
Hyp |
Ref |
Expression |
1 |
|
isdivrng1.1 |
|- G = ( 1st ` R ) |
2 |
|
isdivrng1.2 |
|- H = ( 2nd ` R ) |
3 |
|
isdivrng1.3 |
|- Z = ( GId ` G ) |
4 |
|
isdivrng1.4 |
|- X = ran G |
5 |
1 2 3 4
|
isdrngo1 |
|- ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
6 |
|
ovres |
|- ( ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) = ( A H B ) ) |
7 |
6
|
adantl |
|- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) = ( A H B ) ) |
8 |
|
eqid |
|- ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
9 |
8
|
grpocl |
|- ( ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp /\ A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
10 |
9
|
3expib |
|- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) ) |
11 |
10
|
adantl |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) ) |
12 |
|
grporndm |
|- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
13 |
12
|
adantl |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
14 |
|
difss |
|- ( X \ { Z } ) C_ X |
15 |
|
xpss12 |
|- ( ( ( X \ { Z } ) C_ X /\ ( X \ { Z } ) C_ X ) -> ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ ( X X. X ) ) |
16 |
14 14 15
|
mp2an |
|- ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ ( X X. X ) |
17 |
1 2 4
|
rngosm |
|- ( R e. RingOps -> H : ( X X. X ) --> X ) |
18 |
17
|
fdmd |
|- ( R e. RingOps -> dom H = ( X X. X ) ) |
19 |
16 18
|
sseqtrrid |
|- ( R e. RingOps -> ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ dom H ) |
20 |
|
ssdmres |
|- ( ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ dom H <-> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
21 |
19 20
|
sylib |
|- ( R e. RingOps -> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
22 |
21
|
adantr |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
23 |
22
|
dmeqd |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
24 |
|
dmxpid |
|- dom ( ( X \ { Z } ) X. ( X \ { Z } ) ) = ( X \ { Z } ) |
25 |
23 24
|
eqtrdi |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( X \ { Z } ) ) |
26 |
13 25
|
eqtrd |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( X \ { Z } ) ) |
27 |
26
|
eleq2d |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> A e. ( X \ { Z } ) ) ) |
28 |
26
|
eleq2d |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> B e. ( X \ { Z } ) ) ) |
29 |
27 28
|
anbi12d |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) <-> ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) ) |
30 |
26
|
eleq2d |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) ) |
31 |
11 29 30
|
3imtr3d |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) ) |
32 |
31
|
imp |
|- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) |
33 |
7 32
|
eqeltrrd |
|- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A H B ) e. ( X \ { Z } ) ) |
34 |
33
|
3impb |
|- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A H B ) e. ( X \ { Z } ) ) |
35 |
5 34
|
syl3an1b |
|- ( ( R e. DivRingOps /\ A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A H B ) e. ( X \ { Z } ) ) |