Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divscan2wd.1 | |- ( ph -> A e. No ) |
|
divscan2wd.2 | |- ( ph -> B e. No ) |
||
divscan2wd.3 | |- ( ph -> B =/= 0s ) |
||
divscan2wd.4 | |- ( ph -> E. x e. No ( B x.s x ) = 1s ) |
||
Assertion | divscan1wd | |- ( ph -> ( ( A /su B ) x.s B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divscan2wd.1 | |- ( ph -> A e. No ) |
|
2 | divscan2wd.2 | |- ( ph -> B e. No ) |
|
3 | divscan2wd.3 | |- ( ph -> B =/= 0s ) |
|
4 | divscan2wd.4 | |- ( ph -> E. x e. No ( B x.s x ) = 1s ) |
|
5 | 1 2 3 4 | divsclwd | |- ( ph -> ( A /su B ) e. No ) |
6 | 5 2 | mulscomd | |- ( ph -> ( ( A /su B ) x.s B ) = ( B x.s ( A /su B ) ) ) |
7 | 1 2 3 4 | divscan2wd | |- ( ph -> ( B x.s ( A /su B ) ) = A ) |
8 | 6 7 | eqtrd | |- ( ph -> ( ( A /su B ) x.s B ) = A ) |