Metamath Proof Explorer


Theorem divscan1wd

Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses divscan2wd.1
|- ( ph -> A e. No )
divscan2wd.2
|- ( ph -> B e. No )
divscan2wd.3
|- ( ph -> B =/= 0s )
divscan2wd.4
|- ( ph -> E. x e. No ( B x.s x ) = 1s )
Assertion divscan1wd
|- ( ph -> ( ( A /su B ) x.s B ) = A )

Proof

Step Hyp Ref Expression
1 divscan2wd.1
 |-  ( ph -> A e. No )
2 divscan2wd.2
 |-  ( ph -> B e. No )
3 divscan2wd.3
 |-  ( ph -> B =/= 0s )
4 divscan2wd.4
 |-  ( ph -> E. x e. No ( B x.s x ) = 1s )
5 1 2 3 4 divsclwd
 |-  ( ph -> ( A /su B ) e. No )
6 5 2 mulscomd
 |-  ( ph -> ( ( A /su B ) x.s B ) = ( B x.s ( A /su B ) ) )
7 1 2 3 4 divscan2wd
 |-  ( ph -> ( B x.s ( A /su B ) ) = A )
8 6 7 eqtrd
 |-  ( ph -> ( ( A /su B ) x.s B ) = A )