Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divscan3d.1 | |- ( ph -> A e. No ) |
|
| divscan3d.2 | |- ( ph -> B e. No ) |
||
| divscan3d.3 | |- ( ph -> B =/= 0s ) |
||
| Assertion | divscan3d | |- ( ph -> ( ( B x.s A ) /su B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divscan3d.1 | |- ( ph -> A e. No ) |
|
| 2 | divscan3d.2 | |- ( ph -> B e. No ) |
|
| 3 | divscan3d.3 | |- ( ph -> B =/= 0s ) |
|
| 4 | eqid | |- ( B x.s A ) = ( B x.s A ) |
|
| 5 | 2 1 | mulscld | |- ( ph -> ( B x.s A ) e. No ) |
| 6 | 5 1 2 3 | divsmuld | |- ( ph -> ( ( ( B x.s A ) /su B ) = A <-> ( B x.s A ) = ( B x.s A ) ) ) |
| 7 | 4 6 | mpbiri | |- ( ph -> ( ( B x.s A ) /su B ) = A ) |