Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | divscl | |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recsex | |- ( ( B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) |
|
2 | 1 | 3adant1 | |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) |
3 | divsclw | |- ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No ) |
|
4 | 2 3 | mpdan | |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No ) |