Metamath Proof Explorer


Theorem divscl

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Assertion divscl
|- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No )

Proof

Step Hyp Ref Expression
1 recsex
 |-  ( ( B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s )
2 1 3adant1
 |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s )
3 divsclw
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No )
4 2 3 mpdan
 |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No )