Metamath Proof Explorer


Theorem divsclwd

Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses divsclwd.1
|- ( ph -> A e. No )
divsclwd.2
|- ( ph -> B e. No )
divsclwd.3
|- ( ph -> B =/= 0s )
divsclwd.4
|- ( ph -> E. x e. No ( B x.s x ) = 1s )
Assertion divsclwd
|- ( ph -> ( A /su B ) e. No )

Proof

Step Hyp Ref Expression
1 divsclwd.1
 |-  ( ph -> A e. No )
2 divsclwd.2
 |-  ( ph -> B e. No )
3 divsclwd.3
 |-  ( ph -> B =/= 0s )
4 divsclwd.4
 |-  ( ph -> E. x e. No ( B x.s x ) = 1s )
5 divsclw
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No )
6 1 2 3 4 5 syl31anc
 |-  ( ph -> ( A /su B ) e. No )