| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqtr3 |
|- ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> ( A x.s x ) = ( A x.s y ) ) |
| 2 |
|
simprl |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> x e. No ) |
| 3 |
|
simprr |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> y e. No ) |
| 4 |
|
simpll |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A e. No ) |
| 5 |
|
simplr |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A =/= 0s ) |
| 6 |
2 3 4 5
|
mulscan1d |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( A x.s x ) = ( A x.s y ) <-> x = y ) ) |
| 7 |
1 6
|
imbitrid |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
| 8 |
7
|
ralrimivva |
|- ( ( A e. No /\ A =/= 0s ) -> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
| 9 |
|
oveq2 |
|- ( x = y -> ( A x.s x ) = ( A x.s y ) ) |
| 10 |
9
|
eqeq1d |
|- ( x = y -> ( ( A x.s x ) = B <-> ( A x.s y ) = B ) ) |
| 11 |
10
|
rmo4 |
|- ( E* x e. No ( A x.s x ) = B <-> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
| 12 |
8 11
|
sylibr |
|- ( ( A e. No /\ A =/= 0s ) -> E* x e. No ( A x.s x ) = B ) |