Metamath Proof Explorer


Theorem divsmuld

Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsmuld.1
|- ( ph -> A e. No )
divsmuld.2
|- ( ph -> B e. No )
divsmuld.3
|- ( ph -> C e. No )
divsmuld.4
|- ( ph -> C =/= 0s )
Assertion divsmuld
|- ( ph -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) )

Proof

Step Hyp Ref Expression
1 divsmuld.1
 |-  ( ph -> A e. No )
2 divsmuld.2
 |-  ( ph -> B e. No )
3 divsmuld.3
 |-  ( ph -> C e. No )
4 divsmuld.4
 |-  ( ph -> C =/= 0s )
5 3 4 recsexd
 |-  ( ph -> E. x e. No ( C x.s x ) = 1s )
6 1 2 3 4 5 divsmulwd
 |-  ( ph -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) )