Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divsmuld.1 | |- ( ph -> A e. No ) |
|
divsmuld.2 | |- ( ph -> B e. No ) |
||
divsmuld.3 | |- ( ph -> C e. No ) |
||
divsmuld.4 | |- ( ph -> C =/= 0s ) |
||
Assertion | divsmuld | |- ( ph -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsmuld.1 | |- ( ph -> A e. No ) |
|
2 | divsmuld.2 | |- ( ph -> B e. No ) |
|
3 | divsmuld.3 | |- ( ph -> C e. No ) |
|
4 | divsmuld.4 | |- ( ph -> C =/= 0s ) |
|
5 | 3 4 | recsexd | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
6 | 1 2 3 4 5 | divsmulwd | |- ( ph -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) ) |