Description: The function F used in divsqrsum is a real function. (Contributed by Mario Carneiro, 12-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | divsqrtsum.2 | |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` n ) ) - ( 2 x. ( sqrt ` x ) ) ) ) |
|
Assertion | divsqrsumf | |- F : RR+ --> RR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsqrtsum.2 | |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` n ) ) - ( 2 x. ( sqrt ` x ) ) ) ) |
|
2 | 1 | divsqrtsumlem | |- ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r 1 /\ 1 e. RR+ ) -> ( abs ` ( ( F ` 1 ) - 1 ) ) <_ ( 1 / ( sqrt ` 1 ) ) ) ) |
3 | 2 | simp1i | |- F : RR+ --> RR |