Metamath Proof Explorer


Theorem divsqrtsum2

Description: A bound on the distance of the sum sum_ n <_ x ( 1 / sqrt n ) from its asymptotic value 2 sqrt x + L . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses divsqrtsum.2
|- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` n ) ) - ( 2 x. ( sqrt ` x ) ) ) )
divsqrsum2.1
|- ( ph -> F ~~>r L )
Assertion divsqrtsum2
|- ( ( ph /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqrt ` A ) ) )

Proof

Step Hyp Ref Expression
1 divsqrtsum.2
 |-  F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` n ) ) - ( 2 x. ( sqrt ` x ) ) ) )
2 divsqrsum2.1
 |-  ( ph -> F ~~>r L )
3 1 divsqrtsumlem
 |-  ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqrt ` A ) ) ) )
4 3 simp3i
 |-  ( ( F ~~>r L /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqrt ` A ) ) )
5 2 4 sylan
 |-  ( ( ph /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqrt ` A ) ) )