Metamath Proof Explorer


Theorem divsrecd

Description: Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypotheses divsrecd.1
|- ( ph -> A e. No )
divsrecd.2
|- ( ph -> B e. No )
divsrecd.3
|- ( ph -> B =/= 0s )
Assertion divsrecd
|- ( ph -> ( A /su B ) = ( A x.s ( 1s /su B ) ) )

Proof

Step Hyp Ref Expression
1 divsrecd.1
 |-  ( ph -> A e. No )
2 divsrecd.2
 |-  ( ph -> B e. No )
3 divsrecd.3
 |-  ( ph -> B =/= 0s )
4 1sno
 |-  1s e. No
5 4 a1i
 |-  ( ph -> 1s e. No )
6 5 2 3 divscld
 |-  ( ph -> ( 1s /su B ) e. No )
7 2 1 6 muls12d
 |-  ( ph -> ( B x.s ( A x.s ( 1s /su B ) ) ) = ( A x.s ( B x.s ( 1s /su B ) ) ) )
8 5 2 3 divscan2d
 |-  ( ph -> ( B x.s ( 1s /su B ) ) = 1s )
9 8 oveq2d
 |-  ( ph -> ( A x.s ( B x.s ( 1s /su B ) ) ) = ( A x.s 1s ) )
10 1 mulsridd
 |-  ( ph -> ( A x.s 1s ) = A )
11 7 9 10 3eqtrd
 |-  ( ph -> ( B x.s ( A x.s ( 1s /su B ) ) ) = A )
12 1 6 mulscld
 |-  ( ph -> ( A x.s ( 1s /su B ) ) e. No )
13 1 12 2 3 divsmuld
 |-  ( ph -> ( ( A /su B ) = ( A x.s ( 1s /su B ) ) <-> ( B x.s ( A x.s ( 1s /su B ) ) ) = A ) )
14 11 13 mpbird
 |-  ( ph -> ( A /su B ) = ( A x.s ( 1s /su B ) ) )