Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
2 |
|
divdir |
|- ( ( A e. CC /\ -u B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A / C ) + ( -u B / C ) ) ) |
3 |
1 2
|
syl3an2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A / C ) + ( -u B / C ) ) ) |
4 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
5 |
4
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) / C ) = ( ( A - B ) / C ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + -u B ) / C ) = ( ( A - B ) / C ) ) |
7 |
3 6
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + ( -u B / C ) ) = ( ( A - B ) / C ) ) |
8 |
|
divneg |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> -u ( B / C ) = ( -u B / C ) ) |
9 |
8
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> -u ( B / C ) = ( -u B / C ) ) |
10 |
9
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> -u ( B / C ) = ( -u B / C ) ) |
11 |
10
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + -u ( B / C ) ) = ( ( A / C ) + ( -u B / C ) ) ) |
12 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
13 |
12
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
14 |
13
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
15 |
|
divcl |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
16 |
15
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
17 |
16
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
18 |
14 17
|
negsubd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + -u ( B / C ) ) = ( ( A / C ) - ( B / C ) ) ) |
19 |
11 18
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + ( -u B / C ) ) = ( ( A / C ) - ( B / C ) ) ) |
20 |
7 19
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - B ) / C ) = ( ( A / C ) - ( B / C ) ) ) |