Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
2 |
|
eqeq2 |
|- ( z = A -> ( ( y x. x ) = z <-> ( y x. x ) = A ) ) |
3 |
2
|
riotabidv |
|- ( z = A -> ( iota_ x e. CC ( y x. x ) = z ) = ( iota_ x e. CC ( y x. x ) = A ) ) |
4 |
|
oveq1 |
|- ( y = B -> ( y x. x ) = ( B x. x ) ) |
5 |
4
|
eqeq1d |
|- ( y = B -> ( ( y x. x ) = A <-> ( B x. x ) = A ) ) |
6 |
5
|
riotabidv |
|- ( y = B -> ( iota_ x e. CC ( y x. x ) = A ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
7 |
|
df-div |
|- / = ( z e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ x e. CC ( y x. x ) = z ) ) |
8 |
|
riotaex |
|- ( iota_ x e. CC ( B x. x ) = A ) e. _V |
9 |
3 6 7 8
|
ovmpo |
|- ( ( A e. CC /\ B e. ( CC \ { 0 } ) ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
10 |
1 9
|
sylan2br |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
11 |
10
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |