| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djaj.k |
|- .\/ = ( join ` K ) |
| 2 |
|
djaj.h |
|- H = ( LHyp ` K ) |
| 3 |
|
djaj.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 4 |
|
djaj.j |
|- J = ( ( vA ` K ) ` W ) |
| 5 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. Lat ) |
| 7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OP ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 2 3
|
diadmclN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X e. ( Base ` K ) ) |
| 11 |
10
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> X e. ( Base ` K ) ) |
| 12 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 13 |
9 12
|
opoccl |
|- ( ( K e. OP /\ X e. ( Base ` K ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
| 14 |
8 11 13
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
| 15 |
9 2
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> W e. ( Base ` K ) ) |
| 17 |
9 12
|
opoccl |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 18 |
8 16 17
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 19 |
9 1
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 20 |
6 14 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 21 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 22 |
9 21
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 23 |
6 20 16 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 24 |
9 2 3
|
diadmclN |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> Y e. ( Base ` K ) ) |
| 25 |
24
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> Y e. ( Base ` K ) ) |
| 26 |
9 12
|
opoccl |
|- ( ( K e. OP /\ Y e. ( Base ` K ) ) -> ( ( oc ` K ) ` Y ) e. ( Base ` K ) ) |
| 27 |
8 25 26
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` Y ) e. ( Base ` K ) ) |
| 28 |
9 1
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` Y ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 29 |
6 27 18 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 30 |
9 21
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 31 |
6 29 16 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 32 |
9 21
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
| 33 |
6 23 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
| 34 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 35 |
9 34 21
|
latmle2 |
|- ( ( K e. Lat /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 36 |
6 23 31 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 37 |
9 34 21
|
latmle2 |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 38 |
6 29 16 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 39 |
9 34 6 33 31 16 36 38
|
lattrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) |
| 40 |
9 34 2 3
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I <-> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I <-> ( ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( le ` K ) W ) ) ) |
| 42 |
33 39 41
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I ) |
| 43 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 44 |
|
eqid |
|- ( ( ocA ` K ) ` W ) = ( ( ocA ` K ) ` W ) |
| 45 |
1 21 12 2 43 3 44
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) |
| 46 |
42 45
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) |
| 47 |
|
hloml |
|- ( K e. HL -> K e. OML ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OML ) |
| 49 |
9 1
|
latjcl |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X .\/ Y ) e. ( Base ` K ) ) |
| 50 |
6 11 25 49
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) e. ( Base ` K ) ) |
| 51 |
34 2 3
|
diadmleN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X ( le ` K ) W ) |
| 52 |
51
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> X ( le ` K ) W ) |
| 53 |
34 2 3
|
diadmleN |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> Y ( le ` K ) W ) |
| 54 |
53
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> Y ( le ` K ) W ) |
| 55 |
9 34 1
|
latjle12 |
|- ( ( K e. Lat /\ ( X e. ( Base ` K ) /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( X ( le ` K ) W /\ Y ( le ` K ) W ) <-> ( X .\/ Y ) ( le ` K ) W ) ) |
| 56 |
6 11 25 16 55
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X ( le ` K ) W /\ Y ( le ` K ) W ) <-> ( X .\/ Y ) ( le ` K ) W ) ) |
| 57 |
52 54 56
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) ( le ` K ) W ) |
| 58 |
9 34 1 21 12
|
omlspjN |
|- ( ( K e. OML /\ ( ( X .\/ Y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( X .\/ Y ) ( le ` K ) W ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X .\/ Y ) ) |
| 59 |
48 50 16 57 58
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X .\/ Y ) ) |
| 60 |
9 1
|
latjidm |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
| 61 |
6 18 60
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
| 62 |
61
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 63 |
9 1
|
latjass |
|- ( ( K e. Lat /\ ( ( X .\/ Y ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) ) |
| 64 |
6 50 18 18 63
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) ) |
| 65 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> K e. OL ) |
| 67 |
9 1 21 12
|
oldmm2 |
|- ( ( K e. OL /\ ( X .\/ Y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 68 |
66 50 16 67
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 69 |
9 1 21 12
|
oldmj1 |
|- ( ( K e. OL /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 70 |
66 11 25 69
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 71 |
9 34 21
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
| 72 |
6 11 16 71
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
| 73 |
52 72
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X ( meet ` K ) W ) = X ) |
| 74 |
73
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( oc ` K ) ` X ) ) |
| 75 |
9 1 21 12
|
oldmm1 |
|- ( ( K e. OL /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 76 |
66 11 16 75
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 77 |
74 76
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` X ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 78 |
9 34 21
|
latleeqm1 |
|- ( ( K e. Lat /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( Y ( le ` K ) W <-> ( Y ( meet ` K ) W ) = Y ) ) |
| 79 |
6 25 16 78
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( Y ( le ` K ) W <-> ( Y ( meet ` K ) W ) = Y ) ) |
| 80 |
54 79
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( Y ( meet ` K ) W ) = Y ) |
| 81 |
80
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( oc ` K ) ` Y ) ) |
| 82 |
9 1 21 12
|
oldmm1 |
|- ( ( K e. OL /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 83 |
66 25 16 82
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( Y ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 84 |
81 83
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` Y ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 85 |
77 84
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` X ) ( meet ` K ) ( ( oc ` K ) ` Y ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ) |
| 86 |
70 85
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ) |
| 87 |
86
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) ) |
| 88 |
9 21
|
latmmdir |
|- ( ( K e. OL /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
| 89 |
66 20 29 16 88
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
| 90 |
87 89
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) = ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
| 91 |
90
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X .\/ Y ) ) ( meet ` K ) W ) ) = ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 92 |
68 91
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 93 |
92
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) .\/ ( ( oc ` K ) ` W ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 94 |
64 93
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( ( oc ` K ) ` W ) .\/ ( ( oc ` K ) ` W ) ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 95 |
62 94
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) = ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ) |
| 96 |
95
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( X .\/ Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 97 |
59 96
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( X .\/ Y ) = ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 98 |
97
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( X .\/ Y ) ) = ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
| 99 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( K e. HL /\ W e. H ) ) |
| 100 |
2 3
|
diaclN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I ) |
| 101 |
100
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` X ) e. ran I ) |
| 102 |
2 43 3
|
diaelrnN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` X ) e. ran I ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) |
| 103 |
101 102
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) |
| 104 |
2 3
|
diaclN |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> ( I ` Y ) e. ran I ) |
| 105 |
104
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` Y ) e. ran I ) |
| 106 |
2 43 3
|
diaelrnN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` Y ) e. ran I ) -> ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) |
| 107 |
105 106
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) |
| 108 |
2 43 3 44 4
|
djavalN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) C_ ( ( LTrn ` K ) ` W ) /\ ( I ` Y ) C_ ( ( LTrn ` K ) ` W ) ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) |
| 109 |
99 103 107 108
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) |
| 110 |
9 34 21
|
latmle2 |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 111 |
6 20 16 110
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 112 |
9 34 2 3
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 113 |
112
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 114 |
23 111 113
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) |
| 115 |
9 34 2 3
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 116 |
115
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 117 |
31 38 116
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) |
| 118 |
21 2 3
|
diameetN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I /\ ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 119 |
99 114 117 118
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 120 |
1 21 12 2 43 3 44
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) ) |
| 121 |
120
|
adantrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) ) |
| 122 |
1 21 12 2 43 3 44
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) |
| 123 |
122
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) |
| 124 |
121 123
|
ineq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) i^i ( I ` ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) |
| 125 |
119 124
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) |
| 126 |
125
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) = ( ( ( ocA ` K ) ` W ) ` ( ( ( ( ocA ` K ) ` W ) ` ( I ` X ) ) i^i ( ( ( ocA ` K ) ` W ) ` ( I ` Y ) ) ) ) ) |
| 127 |
109 126
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( ( I ` X ) J ( I ` Y ) ) = ( ( ( ocA ` K ) ` W ) ` ( I ` ( ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( meet ` K ) ( ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) ) |
| 128 |
46 98 127
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. dom I /\ Y e. dom I ) ) -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |