Metamath Proof Explorer


Theorem dju0en

Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dju0en
|- ( A e. V -> ( A |_| (/) ) ~~ A )

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 in0
 |-  ( A i^i (/) ) = (/)
3 endjudisj
 |-  ( ( A e. V /\ (/) e. _V /\ ( A i^i (/) ) = (/) ) -> ( A |_| (/) ) ~~ ( A u. (/) ) )
4 1 2 3 mp3an23
 |-  ( A e. V -> ( A |_| (/) ) ~~ ( A u. (/) ) )
5 un0
 |-  ( A u. (/) ) = A
6 4 5 breqtrdi
 |-  ( A e. V -> ( A |_| (/) ) ~~ A )