| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> A e. V ) | 
						
							| 2 |  | 1oex |  |-  1o e. _V | 
						
							| 3 |  | djuex |  |-  ( ( A e. V /\ 1o e. _V ) -> ( A |_| 1o ) e. _V ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( A |_| 1o ) e. _V ) | 
						
							| 5 |  | simpr |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> B e. ( A |_| 1o ) ) | 
						
							| 6 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 7 | 6 | xpeq2i |  |-  ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 2 8 | xpsn |  |-  ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } | 
						
							| 10 | 7 9 | eqtri |  |-  ( { 1o } X. 1o ) = { <. 1o , (/) >. } | 
						
							| 11 |  | ssun2 |  |-  ( { 1o } X. 1o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 12 | 10 11 | eqsstrri |  |-  { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 13 |  | opex |  |-  <. 1o , (/) >. e. _V | 
						
							| 14 | 13 | snss |  |-  ( <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) | 
						
							| 15 | 12 14 | mpbir |  |-  <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 16 |  | df-dju |  |-  ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 17 | 15 16 | eleqtrri |  |-  <. 1o , (/) >. e. ( A |_| 1o ) | 
						
							| 18 | 17 | a1i |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> <. 1o , (/) >. e. ( A |_| 1o ) ) | 
						
							| 19 |  | difsnen |  |-  ( ( ( A |_| 1o ) e. _V /\ B e. ( A |_| 1o ) /\ <. 1o , (/) >. e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) | 
						
							| 20 | 4 5 18 19 | syl3anc |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) | 
						
							| 21 | 16 | difeq1i |  |-  ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) | 
						
							| 22 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) | 
						
							| 23 |  | disj3 |  |-  ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) | 
						
							| 24 | 22 23 | mpbi |  |-  ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) | 
						
							| 25 |  | difun2 |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) | 
						
							| 26 | 10 | difeq2i |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) | 
						
							| 27 | 24 25 26 | 3eqtr2i |  |-  ( { (/) } X. A ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) | 
						
							| 28 | 21 27 | eqtr4i |  |-  ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) | 
						
							| 29 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 30 | 8 1 29 | sylancr |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 31 | 28 30 | eqbrtrid |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) | 
						
							| 32 |  | entr |  |-  ( ( ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) /\ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) | 
						
							| 33 | 20 31 32 | syl2anc |  |-  ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |