| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> A e. V ) |
| 2 |
|
1oex |
|- 1o e. _V |
| 3 |
|
djuex |
|- ( ( A e. V /\ 1o e. _V ) -> ( A |_| 1o ) e. _V ) |
| 4 |
1 2 3
|
sylancl |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( A |_| 1o ) e. _V ) |
| 5 |
|
simpr |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> B e. ( A |_| 1o ) ) |
| 6 |
|
df1o2 |
|- 1o = { (/) } |
| 7 |
6
|
xpeq2i |
|- ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) |
| 8 |
|
0ex |
|- (/) e. _V |
| 9 |
2 8
|
xpsn |
|- ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } |
| 10 |
7 9
|
eqtri |
|- ( { 1o } X. 1o ) = { <. 1o , (/) >. } |
| 11 |
|
ssun2 |
|- ( { 1o } X. 1o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 12 |
10 11
|
eqsstrri |
|- { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 13 |
|
opex |
|- <. 1o , (/) >. e. _V |
| 14 |
13
|
snss |
|- ( <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) |
| 15 |
12 14
|
mpbir |
|- <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 16 |
|
df-dju |
|- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 17 |
15 16
|
eleqtrri |
|- <. 1o , (/) >. e. ( A |_| 1o ) |
| 18 |
17
|
a1i |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> <. 1o , (/) >. e. ( A |_| 1o ) ) |
| 19 |
|
difsnen |
|- ( ( ( A |_| 1o ) e. _V /\ B e. ( A |_| 1o ) /\ <. 1o , (/) >. e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
| 20 |
4 5 18 19
|
syl3anc |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
| 21 |
16
|
difeq1i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 22 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) |
| 23 |
|
disj3 |
|- ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) |
| 24 |
22 23
|
mpbi |
|- ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
| 25 |
|
difun2 |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
| 26 |
10
|
difeq2i |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 27 |
24 25 26
|
3eqtr2i |
|- ( { (/) } X. A ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 28 |
21 27
|
eqtr4i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) |
| 29 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
| 30 |
8 1 29
|
sylancr |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ A ) |
| 31 |
28 30
|
eqbrtrid |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) |
| 32 |
|
entr |
|- ( ( ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) /\ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |
| 33 |
20 31 32
|
syl2anc |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |