| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enrefg |  |-  ( A e. V -> A ~~ A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. V /\ -. A e. A ) -> A ~~ A ) | 
						
							| 3 |  | ensn1g |  |-  ( A e. V -> { A } ~~ 1o ) | 
						
							| 4 | 3 | ensymd |  |-  ( A e. V -> 1o ~~ { A } ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. V /\ -. A e. A ) -> 1o ~~ { A } ) | 
						
							| 6 |  | simpr |  |-  ( ( A e. V /\ -. A e. A ) -> -. A e. A ) | 
						
							| 7 |  | disjsn |  |-  ( ( A i^i { A } ) = (/) <-> -. A e. A ) | 
						
							| 8 | 6 7 | sylibr |  |-  ( ( A e. V /\ -. A e. A ) -> ( A i^i { A } ) = (/) ) | 
						
							| 9 |  | djuenun |  |-  ( ( A ~~ A /\ 1o ~~ { A } /\ ( A i^i { A } ) = (/) ) -> ( A |_| 1o ) ~~ ( A u. { A } ) ) | 
						
							| 10 | 2 5 8 9 | syl3anc |  |-  ( ( A e. V /\ -. A e. A ) -> ( A |_| 1o ) ~~ ( A u. { A } ) ) | 
						
							| 11 |  | df-suc |  |-  suc A = ( A u. { A } ) | 
						
							| 12 | 10 11 | breqtrrdi |  |-  ( ( A e. V /\ -. A e. A ) -> ( A |_| 1o ) ~~ suc A ) |