| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | simp1 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> A e. V ) | 
						
							| 3 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 5 | 4 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ ( { (/) } X. A ) ) | 
						
							| 6 |  | 1oex |  |-  1o e. _V | 
						
							| 7 |  | snex |  |-  { (/) } e. _V | 
						
							| 8 |  | simp2 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) | 
						
							| 9 |  | xpexg |  |-  ( ( { (/) } e. _V /\ B e. W ) -> ( { (/) } X. B ) e. _V ) | 
						
							| 10 | 7 8 9 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) e. _V ) | 
						
							| 11 |  | xpsnen2g |  |-  ( ( 1o e. _V /\ ( { (/) } X. B ) e. _V ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) | 
						
							| 12 | 6 10 11 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) | 
						
							| 13 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 14 | 1 8 13 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 15 |  | entr |  |-  ( ( ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) /\ ( { (/) } X. B ) ~~ B ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) | 
						
							| 17 | 16 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> B ~~ ( { 1o } X. ( { (/) } X. B ) ) ) | 
						
							| 18 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) | 
						
							| 19 | 18 | a1i |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) | 
						
							| 20 |  | djuenun |  |-  ( ( A ~~ ( { (/) } X. A ) /\ B ~~ ( { 1o } X. ( { (/) } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) | 
						
							| 21 | 5 17 19 20 | syl3anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) | 
						
							| 22 |  | snex |  |-  { 1o } e. _V | 
						
							| 23 |  | simp3 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) | 
						
							| 24 |  | xpexg |  |-  ( ( { 1o } e. _V /\ C e. X ) -> ( { 1o } X. C ) e. _V ) | 
						
							| 25 | 22 23 24 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) e. _V ) | 
						
							| 26 |  | xpsnen2g |  |-  ( ( 1o e. _V /\ ( { 1o } X. C ) e. _V ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) | 
						
							| 27 | 6 25 26 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) | 
						
							| 28 |  | xpsnen2g |  |-  ( ( 1o e. _V /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) | 
						
							| 29 | 6 23 28 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) | 
						
							| 30 |  | entr |  |-  ( ( ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) /\ ( { 1o } X. C ) ~~ C ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) | 
						
							| 31 | 27 29 30 | syl2anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) | 
						
							| 32 | 31 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> C ~~ ( { 1o } X. ( { 1o } X. C ) ) ) | 
						
							| 33 |  | indir |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) | 
						
							| 34 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) | 
						
							| 35 |  | xp01disjl |  |-  ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) | 
						
							| 36 | 35 | xpeq2i |  |-  ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( { 1o } X. (/) ) | 
						
							| 37 |  | xpindi |  |-  ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) | 
						
							| 38 |  | xp0 |  |-  ( { 1o } X. (/) ) = (/) | 
						
							| 39 | 36 37 38 | 3eqtr3i |  |-  ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) | 
						
							| 40 | 34 39 | uneq12i |  |-  ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = ( (/) u. (/) ) | 
						
							| 41 |  | un0 |  |-  ( (/) u. (/) ) = (/) | 
						
							| 42 | 40 41 | eqtri |  |-  ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = (/) | 
						
							| 43 | 33 42 | eqtri |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) | 
						
							| 44 | 43 | a1i |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) | 
						
							| 45 |  | djuenun |  |-  ( ( ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) /\ C ~~ ( { 1o } X. ( { 1o } X. C ) ) /\ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) | 
						
							| 46 | 21 32 44 45 | syl3anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) | 
						
							| 47 |  | df-dju |  |-  ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) | 
						
							| 48 | 47 | xpeq2i |  |-  ( { 1o } X. ( B |_| C ) ) = ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) | 
						
							| 49 |  | xpundi |  |-  ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) | 
						
							| 50 | 48 49 | eqtri |  |-  ( { 1o } X. ( B |_| C ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) | 
						
							| 51 | 50 | uneq2i |  |-  ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) | 
						
							| 52 |  | df-dju |  |-  ( A |_| ( B |_| C ) ) = ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) | 
						
							| 53 |  | unass |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) | 
						
							| 54 | 51 52 53 | 3eqtr4i |  |-  ( A |_| ( B |_| C ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) | 
						
							| 55 | 46 54 | breqtrrdi |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( A |_| ( B |_| C ) ) ) |