Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
simp1 |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> A e. V ) |
3 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
4 |
1 2 3
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. A ) ~~ A ) |
5 |
4
|
ensymd |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ ( { (/) } X. A ) ) |
6 |
|
1oex |
|- 1o e. _V |
7 |
|
snex |
|- { (/) } e. _V |
8 |
|
simp2 |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) |
9 |
|
xpexg |
|- ( ( { (/) } e. _V /\ B e. W ) -> ( { (/) } X. B ) e. _V ) |
10 |
7 8 9
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) e. _V ) |
11 |
|
xpsnen2g |
|- ( ( 1o e. _V /\ ( { (/) } X. B ) e. _V ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) |
12 |
6 10 11
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) ) |
13 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
14 |
1 8 13
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) |
15 |
|
entr |
|- ( ( ( { 1o } X. ( { (/) } X. B ) ) ~~ ( { (/) } X. B ) /\ ( { (/) } X. B ) ~~ B ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) |
16 |
12 14 15
|
syl2anc |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { (/) } X. B ) ) ~~ B ) |
17 |
16
|
ensymd |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> B ~~ ( { 1o } X. ( { (/) } X. B ) ) ) |
18 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) |
19 |
18
|
a1i |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) |
20 |
|
djuenun |
|- ( ( A ~~ ( { (/) } X. A ) /\ B ~~ ( { 1o } X. ( { (/) } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. ( { (/) } X. B ) ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) |
21 |
5 17 19 20
|
syl3anc |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) ) |
22 |
|
snex |
|- { 1o } e. _V |
23 |
|
simp3 |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) |
24 |
|
xpexg |
|- ( ( { 1o } e. _V /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
25 |
22 23 24
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) e. _V ) |
26 |
|
xpsnen2g |
|- ( ( 1o e. _V /\ ( { 1o } X. C ) e. _V ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) |
27 |
6 25 26
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) ) |
28 |
|
xpsnen2g |
|- ( ( 1o e. _V /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
29 |
6 23 28
|
sylancr |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) |
30 |
|
entr |
|- ( ( ( { 1o } X. ( { 1o } X. C ) ) ~~ ( { 1o } X. C ) /\ ( { 1o } X. C ) ~~ C ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) |
31 |
27 29 30
|
syl2anc |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. ( { 1o } X. C ) ) ~~ C ) |
32 |
31
|
ensymd |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> C ~~ ( { 1o } X. ( { 1o } X. C ) ) ) |
33 |
|
indir |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) |
34 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
35 |
|
xp01disjl |
|- ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) |
36 |
35
|
xpeq2i |
|- ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( { 1o } X. (/) ) |
37 |
|
xpindi |
|- ( { 1o } X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) |
38 |
|
xp0 |
|- ( { 1o } X. (/) ) = (/) |
39 |
36 37 38
|
3eqtr3i |
|- ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
40 |
34 39
|
uneq12i |
|- ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = ( (/) u. (/) ) |
41 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
42 |
40 41
|
eqtri |
|- ( ( ( { (/) } X. A ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) u. ( ( { 1o } X. ( { (/) } X. B ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) ) = (/) |
43 |
33 42
|
eqtri |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) |
44 |
43
|
a1i |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) |
45 |
|
djuenun |
|- ( ( ( A |_| B ) ~~ ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) /\ C ~~ ( { 1o } X. ( { 1o } X. C ) ) /\ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) i^i ( { 1o } X. ( { 1o } X. C ) ) ) = (/) ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
46 |
21 32 44 45
|
syl3anc |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
47 |
|
df-dju |
|- ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) |
48 |
47
|
xpeq2i |
|- ( { 1o } X. ( B |_| C ) ) = ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
49 |
|
xpundi |
|- ( { 1o } X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
50 |
48 49
|
eqtri |
|- ( { 1o } X. ( B |_| C ) ) = ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
51 |
50
|
uneq2i |
|- ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
52 |
|
df-dju |
|- ( A |_| ( B |_| C ) ) = ( ( { (/) } X. A ) u. ( { 1o } X. ( B |_| C ) ) ) |
53 |
|
unass |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) = ( ( { (/) } X. A ) u. ( ( { 1o } X. ( { (/) } X. B ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) ) |
54 |
51 52 53
|
3eqtr4i |
|- ( A |_| ( B |_| C ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. ( { (/) } X. B ) ) ) u. ( { 1o } X. ( { 1o } X. C ) ) ) |
55 |
46 54
|
breqtrrdi |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A |_| B ) |_| C ) ~~ ( A |_| ( B |_| C ) ) ) |