| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex |  |-  1o e. _V | 
						
							| 2 |  | xpsnen2g |  |-  ( ( 1o e. _V /\ A e. V ) -> ( { 1o } X. A ) ~~ A ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. V -> ( { 1o } X. A ) ~~ A ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 6 | 4 5 | mpan |  |-  ( B e. W -> ( { (/) } X. B ) ~~ B ) | 
						
							| 7 |  | ensym |  |-  ( ( { 1o } X. A ) ~~ A -> A ~~ ( { 1o } X. A ) ) | 
						
							| 8 |  | ensym |  |-  ( ( { (/) } X. B ) ~~ B -> B ~~ ( { (/) } X. B ) ) | 
						
							| 9 |  | incom |  |-  ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) | 
						
							| 10 |  | xp01disjl |  |-  ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) = (/) | 
						
							| 11 | 9 10 | eqtri |  |-  ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) | 
						
							| 12 |  | djuenun |  |-  ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) /\ ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) | 
						
							| 13 | 11 12 | mp3an3 |  |-  ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) | 
						
							| 14 | 7 8 13 | syl2an |  |-  ( ( ( { 1o } X. A ) ~~ A /\ ( { (/) } X. B ) ~~ B ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) | 
						
							| 15 | 3 6 14 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) | 
						
							| 16 |  | df-dju |  |-  ( B |_| A ) = ( ( { (/) } X. B ) u. ( { 1o } X. A ) ) | 
						
							| 17 | 16 | equncomi |  |-  ( B |_| A ) = ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) | 
						
							| 18 | 15 17 | breqtrrdi |  |-  ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( B |_| A ) ) |