Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
|- 1o e. _V |
2 |
|
xpsnen2g |
|- ( ( 1o e. _V /\ A e. V ) -> ( { 1o } X. A ) ~~ A ) |
3 |
1 2
|
mpan |
|- ( A e. V -> ( { 1o } X. A ) ~~ A ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
6 |
4 5
|
mpan |
|- ( B e. W -> ( { (/) } X. B ) ~~ B ) |
7 |
|
ensym |
|- ( ( { 1o } X. A ) ~~ A -> A ~~ ( { 1o } X. A ) ) |
8 |
|
ensym |
|- ( ( { (/) } X. B ) ~~ B -> B ~~ ( { (/) } X. B ) ) |
9 |
|
incom |
|- ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) |
10 |
|
xp01disjl |
|- ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) = (/) |
11 |
9 10
|
eqtri |
|- ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) |
12 |
|
djuenun |
|- ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) /\ ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
13 |
11 12
|
mp3an3 |
|- ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
14 |
7 8 13
|
syl2an |
|- ( ( ( { 1o } X. A ) ~~ A /\ ( { (/) } X. B ) ~~ B ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
15 |
3 6 14
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
16 |
|
df-dju |
|- ( B |_| A ) = ( ( { (/) } X. B ) u. ( { 1o } X. A ) ) |
17 |
16
|
equncomi |
|- ( B |_| A ) = ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) |
18 |
15 17
|
breqtrrdi |
|- ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( B |_| A ) ) |