| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djussxp |  |-  U_ x e. A ( { x } X. C ) C_ ( A X. _V ) | 
						
							| 2 |  | incom |  |-  ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) | 
						
							| 3 |  | djussxp |  |-  U_ y e. B ( { y } X. D ) C_ ( B X. _V ) | 
						
							| 4 |  | incom |  |-  ( ( B X. _V ) i^i ( A X. _V ) ) = ( ( A X. _V ) i^i ( B X. _V ) ) | 
						
							| 5 |  | xpdisj1 |  |-  ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i ( B X. _V ) ) = (/) ) | 
						
							| 6 | 4 5 | eqtrid |  |-  ( ( A i^i B ) = (/) -> ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) | 
						
							| 7 |  | ssdisj |  |-  ( ( U_ y e. B ( { y } X. D ) C_ ( B X. _V ) /\ ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) | 
						
							| 8 | 3 6 7 | sylancr |  |-  ( ( A i^i B ) = (/) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) | 
						
							| 10 |  | ssdisj |  |-  ( ( U_ x e. A ( { x } X. C ) C_ ( A X. _V ) /\ ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) | 
						
							| 11 | 1 9 10 | sylancr |  |-  ( ( A i^i B ) = (/) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |