| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snex |  |-  { (/) } e. _V | 
						
							| 2 | 1 | xpdom2 |  |-  ( A ~<_ B -> ( { (/) } X. A ) ~<_ ( { (/) } X. B ) ) | 
						
							| 3 |  | snex |  |-  { 1o } e. _V | 
						
							| 4 |  | xpexg |  |-  ( ( { 1o } e. _V /\ C e. V ) -> ( { 1o } X. C ) e. _V ) | 
						
							| 5 | 3 4 | mpan |  |-  ( C e. V -> ( { 1o } X. C ) e. _V ) | 
						
							| 6 |  | domrefg |  |-  ( ( { 1o } X. C ) e. _V -> ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( C e. V -> ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) | 
						
							| 8 |  | xp01disjl |  |-  ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) | 
						
							| 9 |  | undom |  |-  ( ( ( ( { (/) } X. A ) ~<_ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( ( ( { (/) } X. A ) ~<_ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) | 
						
							| 11 | 2 7 10 | syl2an |  |-  ( ( A ~<_ B /\ C e. V ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) | 
						
							| 12 |  | df-dju |  |-  ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) | 
						
							| 13 |  | df-dju |  |-  ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) | 
						
							| 14 | 11 12 13 | 3brtr4g |  |-  ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |