| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djudom1 |  |-  ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) | 
						
							| 2 |  | reldom |  |-  Rel ~<_ | 
						
							| 3 | 2 | brrelex1i |  |-  ( A ~<_ B -> A e. _V ) | 
						
							| 4 |  | djucomen |  |-  ( ( A e. _V /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) | 
						
							| 6 | 2 | brrelex2i |  |-  ( A ~<_ B -> B e. _V ) | 
						
							| 7 |  | djucomen |  |-  ( ( B e. _V /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( A ~<_ B /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) | 
						
							| 9 |  | domen1 |  |-  ( ( A |_| C ) ~~ ( C |_| A ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( B |_| C ) ) ) | 
						
							| 10 |  | domen2 |  |-  ( ( B |_| C ) ~~ ( C |_| B ) -> ( ( C |_| A ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) | 
						
							| 11 | 9 10 | sylan9bb |  |-  ( ( ( A |_| C ) ~~ ( C |_| A ) /\ ( B |_| C ) ~~ ( C |_| B ) ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) | 
						
							| 12 | 5 8 11 | syl2anc |  |-  ( ( A ~<_ B /\ C e. V ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) | 
						
							| 13 | 1 12 | mpbid |  |-  ( ( A ~<_ B /\ C e. V ) -> ( C |_| A ) ~<_ ( C |_| B ) ) |