| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djudom1 |
|- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |
| 2 |
|
reldom |
|- Rel ~<_ |
| 3 |
2
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
| 4 |
|
djucomen |
|- ( ( A e. _V /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
| 5 |
3 4
|
sylan |
|- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
| 6 |
2
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
| 7 |
|
djucomen |
|- ( ( B e. _V /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
| 8 |
6 7
|
sylan |
|- ( ( A ~<_ B /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
| 9 |
|
domen1 |
|- ( ( A |_| C ) ~~ ( C |_| A ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( B |_| C ) ) ) |
| 10 |
|
domen2 |
|- ( ( B |_| C ) ~~ ( C |_| B ) -> ( ( C |_| A ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
| 11 |
9 10
|
sylan9bb |
|- ( ( ( A |_| C ) ~~ ( C |_| A ) /\ ( B |_| C ) ~~ ( C |_| B ) ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
| 12 |
5 8 11
|
syl2anc |
|- ( ( A ~<_ B /\ C e. V ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
| 13 |
1 12
|
mpbid |
|- ( ( A ~<_ B /\ C e. V ) -> ( C |_| A ) ~<_ ( C |_| B ) ) |