Step |
Hyp |
Ref |
Expression |
1 |
|
djudom1 |
|- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
4 |
|
djucomen |
|- ( ( A e. _V /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
5 |
3 4
|
sylan |
|- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
6 |
2
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
7 |
|
djucomen |
|- ( ( B e. _V /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
8 |
6 7
|
sylan |
|- ( ( A ~<_ B /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
9 |
|
domen1 |
|- ( ( A |_| C ) ~~ ( C |_| A ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( B |_| C ) ) ) |
10 |
|
domen2 |
|- ( ( B |_| C ) ~~ ( C |_| B ) -> ( ( C |_| A ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
11 |
9 10
|
sylan9bb |
|- ( ( ( A |_| C ) ~~ ( C |_| A ) /\ ( B |_| C ) ~~ ( C |_| B ) ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
12 |
5 8 11
|
syl2anc |
|- ( ( A ~<_ B /\ C e. V ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
13 |
1 12
|
mpbid |
|- ( ( A ~<_ B /\ C e. V ) -> ( C |_| A ) ~<_ ( C |_| B ) ) |