Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudoml | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A |_| B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) | |
| 2 | ssun1 | |- A C_ ( A u. B ) | |
| 3 | ssdomg | |- ( ( A u. B ) e. _V -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) | |
| 4 | 1 2 3 | mpisyl | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A u. B ) ) | 
| 5 | undjudom | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) | |
| 6 | domtr | |- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( A |_| B ) ) -> A ~<_ ( A |_| B ) ) | |
| 7 | 4 5 6 | syl2anc | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A |_| B ) ) |