Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | djudoml | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A |_| B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
|
2 | ssun1 | |- A C_ ( A u. B ) |
|
3 | ssdomg | |- ( ( A u. B ) e. _V -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
|
4 | 1 2 3 | mpisyl | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A u. B ) ) |
5 | undjudom | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
6 | domtr | |- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( A |_| B ) ) -> A ~<_ ( A |_| B ) ) |
|
7 | 4 5 6 | syl2anc | |- ( ( A e. V /\ B e. W ) -> A ~<_ ( A |_| B ) ) |