Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
relen |
|- Rel ~~ |
3 |
2
|
brrelex1i |
|- ( A ~~ B -> A e. _V ) |
4 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
5 |
1 3 4
|
sylancr |
|- ( A ~~ B -> ( { (/) } X. A ) ~~ A ) |
6 |
2
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
7 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ B e. _V ) -> ( { (/) } X. B ) ~~ B ) |
8 |
1 6 7
|
sylancr |
|- ( A ~~ B -> ( { (/) } X. B ) ~~ B ) |
9 |
8
|
ensymd |
|- ( A ~~ B -> B ~~ ( { (/) } X. B ) ) |
10 |
|
entr |
|- ( ( A ~~ B /\ B ~~ ( { (/) } X. B ) ) -> A ~~ ( { (/) } X. B ) ) |
11 |
9 10
|
mpdan |
|- ( A ~~ B -> A ~~ ( { (/) } X. B ) ) |
12 |
|
entr |
|- ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( { (/) } X. B ) ) -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) |
13 |
5 11 12
|
syl2anc |
|- ( A ~~ B -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) |
14 |
|
1on |
|- 1o e. On |
15 |
2
|
brrelex1i |
|- ( C ~~ D -> C e. _V ) |
16 |
|
xpsnen2g |
|- ( ( 1o e. On /\ C e. _V ) -> ( { 1o } X. C ) ~~ C ) |
17 |
14 15 16
|
sylancr |
|- ( C ~~ D -> ( { 1o } X. C ) ~~ C ) |
18 |
2
|
brrelex2i |
|- ( C ~~ D -> D e. _V ) |
19 |
|
xpsnen2g |
|- ( ( 1o e. On /\ D e. _V ) -> ( { 1o } X. D ) ~~ D ) |
20 |
14 18 19
|
sylancr |
|- ( C ~~ D -> ( { 1o } X. D ) ~~ D ) |
21 |
20
|
ensymd |
|- ( C ~~ D -> D ~~ ( { 1o } X. D ) ) |
22 |
|
entr |
|- ( ( C ~~ D /\ D ~~ ( { 1o } X. D ) ) -> C ~~ ( { 1o } X. D ) ) |
23 |
21 22
|
mpdan |
|- ( C ~~ D -> C ~~ ( { 1o } X. D ) ) |
24 |
|
entr |
|- ( ( ( { 1o } X. C ) ~~ C /\ C ~~ ( { 1o } X. D ) ) -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) |
25 |
17 23 24
|
syl2anc |
|- ( C ~~ D -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) |
26 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) |
27 |
|
xp01disjl |
|- ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) |
28 |
|
unen |
|- ( ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
29 |
26 27 28
|
mpanr12 |
|- ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
30 |
13 25 29
|
syl2an |
|- ( ( A ~~ B /\ C ~~ D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
31 |
|
df-dju |
|- ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) |
32 |
|
df-dju |
|- ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) |
33 |
30 31 32
|
3brtr4g |
|- ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) |