| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | relen |  |-  Rel ~~ | 
						
							| 3 | 2 | brrelex1i |  |-  ( A ~~ B -> A e. _V ) | 
						
							| 4 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 5 | 1 3 4 | sylancr |  |-  ( A ~~ B -> ( { (/) } X. A ) ~~ A ) | 
						
							| 6 | 2 | brrelex2i |  |-  ( A ~~ B -> B e. _V ) | 
						
							| 7 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ B e. _V ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 8 | 1 6 7 | sylancr |  |-  ( A ~~ B -> ( { (/) } X. B ) ~~ B ) | 
						
							| 9 | 8 | ensymd |  |-  ( A ~~ B -> B ~~ ( { (/) } X. B ) ) | 
						
							| 10 |  | entr |  |-  ( ( A ~~ B /\ B ~~ ( { (/) } X. B ) ) -> A ~~ ( { (/) } X. B ) ) | 
						
							| 11 | 9 10 | mpdan |  |-  ( A ~~ B -> A ~~ ( { (/) } X. B ) ) | 
						
							| 12 |  | entr |  |-  ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( { (/) } X. B ) ) -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) | 
						
							| 13 | 5 11 12 | syl2anc |  |-  ( A ~~ B -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) | 
						
							| 14 |  | 1on |  |-  1o e. On | 
						
							| 15 | 2 | brrelex1i |  |-  ( C ~~ D -> C e. _V ) | 
						
							| 16 |  | xpsnen2g |  |-  ( ( 1o e. On /\ C e. _V ) -> ( { 1o } X. C ) ~~ C ) | 
						
							| 17 | 14 15 16 | sylancr |  |-  ( C ~~ D -> ( { 1o } X. C ) ~~ C ) | 
						
							| 18 | 2 | brrelex2i |  |-  ( C ~~ D -> D e. _V ) | 
						
							| 19 |  | xpsnen2g |  |-  ( ( 1o e. On /\ D e. _V ) -> ( { 1o } X. D ) ~~ D ) | 
						
							| 20 | 14 18 19 | sylancr |  |-  ( C ~~ D -> ( { 1o } X. D ) ~~ D ) | 
						
							| 21 | 20 | ensymd |  |-  ( C ~~ D -> D ~~ ( { 1o } X. D ) ) | 
						
							| 22 |  | entr |  |-  ( ( C ~~ D /\ D ~~ ( { 1o } X. D ) ) -> C ~~ ( { 1o } X. D ) ) | 
						
							| 23 | 21 22 | mpdan |  |-  ( C ~~ D -> C ~~ ( { 1o } X. D ) ) | 
						
							| 24 |  | entr |  |-  ( ( ( { 1o } X. C ) ~~ C /\ C ~~ ( { 1o } X. D ) ) -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) | 
						
							| 25 | 17 23 24 | syl2anc |  |-  ( C ~~ D -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) | 
						
							| 26 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) | 
						
							| 27 |  | xp01disjl |  |-  ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) | 
						
							| 28 |  | unen |  |-  ( ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) | 
						
							| 29 | 26 27 28 | mpanr12 |  |-  ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) | 
						
							| 30 | 13 25 29 | syl2an |  |-  ( ( A ~~ B /\ C ~~ D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) | 
						
							| 31 |  | df-dju |  |-  ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) | 
						
							| 32 |  | df-dju |  |-  ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) | 
						
							| 33 | 30 31 32 | 3brtr4g |  |-  ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) |