| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djuen |  |-  ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( A |_| C ) ~~ ( B |_| D ) ) | 
						
							| 3 |  | relen |  |-  Rel ~~ | 
						
							| 4 | 3 | brrelex2i |  |-  ( A ~~ B -> B e. _V ) | 
						
							| 5 | 3 | brrelex2i |  |-  ( C ~~ D -> D e. _V ) | 
						
							| 6 |  | id |  |-  ( ( B i^i D ) = (/) -> ( B i^i D ) = (/) ) | 
						
							| 7 |  | endjudisj |  |-  ( ( B e. _V /\ D e. _V /\ ( B i^i D ) = (/) ) -> ( B |_| D ) ~~ ( B u. D ) ) | 
						
							| 8 | 4 5 6 7 | syl3an |  |-  ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( B |_| D ) ~~ ( B u. D ) ) | 
						
							| 9 |  | entr |  |-  ( ( ( A |_| C ) ~~ ( B |_| D ) /\ ( B |_| D ) ~~ ( B u. D ) ) -> ( A |_| C ) ~~ ( B u. D ) ) | 
						
							| 10 | 2 8 9 | syl2anc |  |-  ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( A |_| C ) ~~ ( B u. D ) ) |