| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpeq2 |  |-  ( A = B -> ( { (/) } X. A ) = ( { (/) } X. B ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A = B /\ C = D ) -> ( { (/) } X. A ) = ( { (/) } X. B ) ) | 
						
							| 3 |  | xpeq2 |  |-  ( C = D -> ( { 1o } X. C ) = ( { 1o } X. D ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A = B /\ C = D ) -> ( { 1o } X. C ) = ( { 1o } X. D ) ) | 
						
							| 5 | 2 4 | uneq12d |  |-  ( ( A = B /\ C = D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) | 
						
							| 6 |  | df-dju |  |-  ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) | 
						
							| 7 |  | df-dju |  |-  ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) | 
						
							| 8 | 5 6 7 | 3eqtr4g |  |-  ( ( A = B /\ C = D ) -> ( A |_| C ) = ( B |_| D ) ) |