Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq2 |
|- ( A = B -> ( { (/) } X. A ) = ( { (/) } X. B ) ) |
2 |
1
|
adantr |
|- ( ( A = B /\ C = D ) -> ( { (/) } X. A ) = ( { (/) } X. B ) ) |
3 |
|
xpeq2 |
|- ( C = D -> ( { 1o } X. C ) = ( { 1o } X. D ) ) |
4 |
3
|
adantl |
|- ( ( A = B /\ C = D ) -> ( { 1o } X. C ) = ( { 1o } X. D ) ) |
5 |
2 4
|
uneq12d |
|- ( ( A = B /\ C = D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
6 |
|
df-dju |
|- ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) |
7 |
|
df-dju |
|- ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) |
8 |
5 6 7
|
3eqtr4g |
|- ( ( A = B /\ C = D ) -> ( A |_| C ) = ( B |_| D ) ) |