Metamath Proof Explorer


Theorem djuexALT

Description: Alternate proof of djuex , which is shorter, but based indirectly on the definitions of inl and inr . (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion djuexALT
|- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V )

Proof

Step Hyp Ref Expression
1 prex
 |-  { (/) , 1o } e. _V
2 unexg
 |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V )
3 xpexg
 |-  ( ( { (/) , 1o } e. _V /\ ( A u. B ) e. _V ) -> ( { (/) , 1o } X. ( A u. B ) ) e. _V )
4 1 2 3 sylancr
 |-  ( ( A e. V /\ B e. W ) -> ( { (/) , 1o } X. ( A u. B ) ) e. _V )
5 djuss
 |-  ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) )
6 5 a1i
 |-  ( ( A e. V /\ B e. W ) -> ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) )
7 4 6 ssexd
 |-  ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V )