Step |
Hyp |
Ref |
Expression |
1 |
|
djuex |
|- ( ( A e. _V /\ B e. _V ) -> ( A |_| B ) e. _V ) |
2 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
3 |
2
|
eleq1i |
|- ( ( A |_| B ) e. _V <-> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
4 |
|
unexb |
|- ( ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) <-> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
5 |
3 4
|
bitr4i |
|- ( ( A |_| B ) e. _V <-> ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) ) |
6 |
|
0nep0 |
|- (/) =/= { (/) } |
7 |
6
|
necomi |
|- { (/) } =/= (/) |
8 |
|
rnexg |
|- ( ( { (/) } X. A ) e. _V -> ran ( { (/) } X. A ) e. _V ) |
9 |
|
rnxp |
|- ( { (/) } =/= (/) -> ran ( { (/) } X. A ) = A ) |
10 |
9
|
eleq1d |
|- ( { (/) } =/= (/) -> ( ran ( { (/) } X. A ) e. _V <-> A e. _V ) ) |
11 |
8 10
|
syl5ib |
|- ( { (/) } =/= (/) -> ( ( { (/) } X. A ) e. _V -> A e. _V ) ) |
12 |
7 11
|
ax-mp |
|- ( ( { (/) } X. A ) e. _V -> A e. _V ) |
13 |
|
1oex |
|- 1o e. _V |
14 |
13
|
snnz |
|- { 1o } =/= (/) |
15 |
|
rnexg |
|- ( ( { 1o } X. B ) e. _V -> ran ( { 1o } X. B ) e. _V ) |
16 |
|
rnxp |
|- ( { 1o } =/= (/) -> ran ( { 1o } X. B ) = B ) |
17 |
16
|
eleq1d |
|- ( { 1o } =/= (/) -> ( ran ( { 1o } X. B ) e. _V <-> B e. _V ) ) |
18 |
15 17
|
syl5ib |
|- ( { 1o } =/= (/) -> ( ( { 1o } X. B ) e. _V -> B e. _V ) ) |
19 |
14 18
|
ax-mp |
|- ( ( { 1o } X. B ) e. _V -> B e. _V ) |
20 |
12 19
|
anim12i |
|- ( ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) -> ( A e. _V /\ B e. _V ) ) |
21 |
5 20
|
sylbi |
|- ( ( A |_| B ) e. _V -> ( A e. _V /\ B e. _V ) ) |
22 |
1 21
|
impbii |
|- ( ( A e. _V /\ B e. _V ) <-> ( A |_| B ) e. _V ) |