| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 2 |  | 0elon |  |-  (/) e. On | 
						
							| 3 |  | relsdom |  |-  Rel ~< | 
						
							| 4 | 3 | brrelex1i |  |-  ( A ~< _om -> A e. _V ) | 
						
							| 5 |  | xpsnen2g |  |-  ( ( (/) e. On /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 6 | 2 4 5 | sylancr |  |-  ( A ~< _om -> ( { (/) } X. A ) ~~ A ) | 
						
							| 7 |  | sdomen1 |  |-  ( ( { (/) } X. A ) ~~ A -> ( ( { (/) } X. A ) ~< _om <-> A ~< _om ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A ~< _om -> ( ( { (/) } X. A ) ~< _om <-> A ~< _om ) ) | 
						
							| 9 | 8 | ibir |  |-  ( A ~< _om -> ( { (/) } X. A ) ~< _om ) | 
						
							| 10 |  | 1on |  |-  1o e. On | 
						
							| 11 | 3 | brrelex1i |  |-  ( B ~< _om -> B e. _V ) | 
						
							| 12 |  | xpsnen2g |  |-  ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( B ~< _om -> ( { 1o } X. B ) ~~ B ) | 
						
							| 14 |  | sdomen1 |  |-  ( ( { 1o } X. B ) ~~ B -> ( ( { 1o } X. B ) ~< _om <-> B ~< _om ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( B ~< _om -> ( ( { 1o } X. B ) ~< _om <-> B ~< _om ) ) | 
						
							| 16 | 15 | ibir |  |-  ( B ~< _om -> ( { 1o } X. B ) ~< _om ) | 
						
							| 17 |  | unfi2 |  |-  ( ( ( { (/) } X. A ) ~< _om /\ ( { 1o } X. B ) ~< _om ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~< _om ) | 
						
							| 18 | 9 16 17 | syl2an |  |-  ( ( A ~< _om /\ B ~< _om ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~< _om ) | 
						
							| 19 | 1 18 | eqbrtrid |  |-  ( ( A ~< _om /\ B ~< _om ) -> ( A |_| B ) ~< _om ) |