Metamath Proof Explorer


Theorem djuin

Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022)

Ref Expression
Assertion djuin
|- ( ( inl " A ) i^i ( inr " B ) ) = (/)

Proof

Step Hyp Ref Expression
1 incom
 |-  ( ( inr " B ) i^i ( inl " A ) ) = ( ( inl " A ) i^i ( inr " B ) )
2 imassrn
 |-  ( inr " B ) C_ ran inr
3 djurf1o
 |-  inr : _V -1-1-onto-> ( { 1o } X. _V )
4 f1of
 |-  ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr : _V --> ( { 1o } X. _V ) )
5 frn
 |-  ( inr : _V --> ( { 1o } X. _V ) -> ran inr C_ ( { 1o } X. _V ) )
6 3 4 5 mp2b
 |-  ran inr C_ ( { 1o } X. _V )
7 2 6 sstri
 |-  ( inr " B ) C_ ( { 1o } X. _V )
8 incom
 |-  ( ( inl " A ) i^i ( { 1o } X. _V ) ) = ( ( { 1o } X. _V ) i^i ( inl " A ) )
9 imassrn
 |-  ( inl " A ) C_ ran inl
10 djulf1o
 |-  inl : _V -1-1-onto-> ( { (/) } X. _V )
11 f1of
 |-  ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl : _V --> ( { (/) } X. _V ) )
12 frn
 |-  ( inl : _V --> ( { (/) } X. _V ) -> ran inl C_ ( { (/) } X. _V ) )
13 10 11 12 mp2b
 |-  ran inl C_ ( { (/) } X. _V )
14 9 13 sstri
 |-  ( inl " A ) C_ ( { (/) } X. _V )
15 1n0
 |-  1o =/= (/)
16 15 necomi
 |-  (/) =/= 1o
17 disjsn2
 |-  ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) )
18 xpdisj1
 |-  ( ( { (/) } i^i { 1o } ) = (/) -> ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) )
19 16 17 18 mp2b
 |-  ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/)
20 ssdisj
 |-  ( ( ( inl " A ) C_ ( { (/) } X. _V ) /\ ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) ) -> ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/) )
21 14 19 20 mp2an
 |-  ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/)
22 8 21 eqtr3i
 |-  ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/)
23 ssdisj
 |-  ( ( ( inr " B ) C_ ( { 1o } X. _V ) /\ ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/) ) -> ( ( inr " B ) i^i ( inl " A ) ) = (/) )
24 7 22 23 mp2an
 |-  ( ( inr " B ) i^i ( inl " A ) ) = (/)
25 1 24 eqtr3i
 |-  ( ( inl " A ) i^i ( inr " B ) ) = (/)