Step |
Hyp |
Ref |
Expression |
1 |
|
incom |
|- ( ( inr " B ) i^i ( inl " A ) ) = ( ( inl " A ) i^i ( inr " B ) ) |
2 |
|
imassrn |
|- ( inr " B ) C_ ran inr |
3 |
|
djurf1o |
|- inr : _V -1-1-onto-> ( { 1o } X. _V ) |
4 |
|
f1of |
|- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr : _V --> ( { 1o } X. _V ) ) |
5 |
|
frn |
|- ( inr : _V --> ( { 1o } X. _V ) -> ran inr C_ ( { 1o } X. _V ) ) |
6 |
3 4 5
|
mp2b |
|- ran inr C_ ( { 1o } X. _V ) |
7 |
2 6
|
sstri |
|- ( inr " B ) C_ ( { 1o } X. _V ) |
8 |
|
incom |
|- ( ( inl " A ) i^i ( { 1o } X. _V ) ) = ( ( { 1o } X. _V ) i^i ( inl " A ) ) |
9 |
|
imassrn |
|- ( inl " A ) C_ ran inl |
10 |
|
djulf1o |
|- inl : _V -1-1-onto-> ( { (/) } X. _V ) |
11 |
|
f1of |
|- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl : _V --> ( { (/) } X. _V ) ) |
12 |
|
frn |
|- ( inl : _V --> ( { (/) } X. _V ) -> ran inl C_ ( { (/) } X. _V ) ) |
13 |
10 11 12
|
mp2b |
|- ran inl C_ ( { (/) } X. _V ) |
14 |
9 13
|
sstri |
|- ( inl " A ) C_ ( { (/) } X. _V ) |
15 |
|
1n0 |
|- 1o =/= (/) |
16 |
15
|
necomi |
|- (/) =/= 1o |
17 |
|
disjsn2 |
|- ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) |
18 |
|
xpdisj1 |
|- ( ( { (/) } i^i { 1o } ) = (/) -> ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) ) |
19 |
16 17 18
|
mp2b |
|- ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) |
20 |
|
ssdisj |
|- ( ( ( inl " A ) C_ ( { (/) } X. _V ) /\ ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) ) -> ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/) ) |
21 |
14 19 20
|
mp2an |
|- ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/) |
22 |
8 21
|
eqtr3i |
|- ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/) |
23 |
|
ssdisj |
|- ( ( ( inr " B ) C_ ( { 1o } X. _V ) /\ ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/) ) -> ( ( inr " B ) i^i ( inl " A ) ) = (/) ) |
24 |
7 22 23
|
mp2an |
|- ( ( inr " B ) i^i ( inl " A ) ) = (/) |
25 |
1 24
|
eqtr3i |
|- ( ( inl " A ) i^i ( inr " B ) ) = (/) |