Step |
Hyp |
Ref |
Expression |
1 |
|
df-inl |
|- inl = ( x e. _V |-> <. (/) , x >. ) |
2 |
|
opeq2 |
|- ( x = C -> <. (/) , x >. = <. (/) , C >. ) |
3 |
|
elex |
|- ( C e. A -> C e. _V ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
4
|
snid |
|- (/) e. { (/) } |
6 |
|
opelxpi |
|- ( ( (/) e. { (/) } /\ C e. A ) -> <. (/) , C >. e. ( { (/) } X. A ) ) |
7 |
5 6
|
mpan |
|- ( C e. A -> <. (/) , C >. e. ( { (/) } X. A ) ) |
8 |
1 2 3 7
|
fvmptd3 |
|- ( C e. A -> ( inl ` C ) = <. (/) , C >. ) |
9 |
|
elun1 |
|- ( <. (/) , C >. e. ( { (/) } X. A ) -> <. (/) , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
10 |
7 9
|
syl |
|- ( C e. A -> <. (/) , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
11 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
12 |
10 11
|
eleqtrrdi |
|- ( C e. A -> <. (/) , C >. e. ( A |_| B ) ) |
13 |
8 12
|
eqeltrd |
|- ( C e. A -> ( inl ` C ) e. ( A |_| B ) ) |