Step |
Hyp |
Ref |
Expression |
1 |
|
djueq1 |
|- ( A = (/) -> ( A |_| B ) = ( (/) |_| B ) ) |
2 |
1
|
breq1d |
|- ( A = (/) -> ( ( A |_| B ) ~<_ ~P A <-> ( (/) |_| B ) ~<_ ~P A ) ) |
3 |
|
relen |
|- Rel ~~ |
4 |
3
|
brrelex2i |
|- ( ( A |_| A ) ~~ A -> A e. _V ) |
5 |
4
|
adantr |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A e. _V ) |
6 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
7 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
8 |
5 6 7
|
3syl |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A ~<_ ~P A ) |
9 |
|
simpr |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ~P A ) |
10 |
|
reldom |
|- Rel ~<_ |
11 |
10
|
brrelex1i |
|- ( B ~<_ ~P A -> B e. _V ) |
12 |
|
djudom1 |
|- ( ( A ~<_ ~P A /\ B e. _V ) -> ( A |_| B ) ~<_ ( ~P A |_| B ) ) |
13 |
11 12
|
sylan2 |
|- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| B ) ) |
14 |
|
simpr |
|- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> B ~<_ ~P A ) |
15 |
10
|
brrelex2i |
|- ( B ~<_ ~P A -> ~P A e. _V ) |
16 |
|
djudom2 |
|- ( ( B ~<_ ~P A /\ ~P A e. _V ) -> ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
17 |
14 15 16
|
syl2anc2 |
|- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
18 |
|
domtr |
|- ( ( ( A |_| B ) ~<_ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
19 |
13 17 18
|
syl2anc |
|- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
20 |
8 9 19
|
syl2anc |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
21 |
|
pwdju1 |
|- ( A e. _V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
22 |
5 21
|
syl |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
23 |
|
domentr |
|- ( ( ( A |_| B ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
24 |
20 22 23
|
syl2anc |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
25 |
24
|
adantr |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
26 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
27 |
5 26
|
syl |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) ~< A <-> A =/= (/) ) ) |
28 |
27
|
biimpar |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> (/) ~< A ) |
29 |
|
0sdom1dom |
|- ( (/) ~< A <-> 1o ~<_ A ) |
30 |
28 29
|
sylib |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> 1o ~<_ A ) |
31 |
5
|
adantr |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> A e. _V ) |
32 |
|
djudom2 |
|- ( ( 1o ~<_ A /\ A e. _V ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
33 |
30 31 32
|
syl2anc |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
34 |
|
simpll |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| A ) ~~ A ) |
35 |
|
domentr |
|- ( ( ( A |_| 1o ) ~<_ ( A |_| A ) /\ ( A |_| A ) ~~ A ) -> ( A |_| 1o ) ~<_ A ) |
36 |
33 34 35
|
syl2anc |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| 1o ) ~<_ A ) |
37 |
|
pwdom |
|- ( ( A |_| 1o ) ~<_ A -> ~P ( A |_| 1o ) ~<_ ~P A ) |
38 |
36 37
|
syl |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ~P ( A |_| 1o ) ~<_ ~P A ) |
39 |
|
domtr |
|- ( ( ( A |_| B ) ~<_ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
40 |
25 38 39
|
syl2anc |
|- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| B ) ~<_ ~P A ) |
41 |
|
0ex |
|- (/) e. _V |
42 |
11
|
adantl |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B e. _V ) |
43 |
|
djucomen |
|- ( ( (/) e. _V /\ B e. _V ) -> ( (/) |_| B ) ~~ ( B |_| (/) ) ) |
44 |
41 42 43
|
sylancr |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) |_| B ) ~~ ( B |_| (/) ) ) |
45 |
|
dju0en |
|- ( B e. _V -> ( B |_| (/) ) ~~ B ) |
46 |
|
domen1 |
|- ( ( B |_| (/) ) ~~ B -> ( ( B |_| (/) ) ~<_ ~P A <-> B ~<_ ~P A ) ) |
47 |
42 45 46
|
3syl |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( ( B |_| (/) ) ~<_ ~P A <-> B ~<_ ~P A ) ) |
48 |
9 47
|
mpbird |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( B |_| (/) ) ~<_ ~P A ) |
49 |
|
endomtr |
|- ( ( ( (/) |_| B ) ~~ ( B |_| (/) ) /\ ( B |_| (/) ) ~<_ ~P A ) -> ( (/) |_| B ) ~<_ ~P A ) |
50 |
44 48 49
|
syl2anc |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) |_| B ) ~<_ ~P A ) |
51 |
2 40 50
|
pm2.61ne |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |