| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-inl |  |-  inl = ( x e. _V |-> <. (/) , x >. ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 | 2 | snid |  |-  (/) e. { (/) } | 
						
							| 4 |  | opelxpi |  |-  ( ( (/) e. { (/) } /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( x e. _V -> <. (/) , x >. e. ( { (/) } X. _V ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( T. /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) | 
						
							| 7 |  | fvexd |  |-  ( ( T. /\ y e. ( { (/) } X. _V ) ) -> ( 2nd ` y ) e. _V ) | 
						
							| 8 |  | 1st2nd2 |  |-  ( y e. ( { (/) } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) | 
						
							| 9 |  | xp1st |  |-  ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) e. { (/) } ) | 
						
							| 10 |  | elsni |  |-  ( ( 1st ` y ) e. { (/) } -> ( 1st ` y ) = (/) ) | 
						
							| 11 | 9 10 | syl |  |-  ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) = (/) ) | 
						
							| 12 | 11 | opeq1d |  |-  ( y e. ( { (/) } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. (/) , ( 2nd ` y ) >. ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( y e. ( { (/) } X. _V ) -> y = <. (/) , ( 2nd ` y ) >. ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( y e. ( { (/) } X. _V ) -> ( <. (/) , x >. = y <-> <. (/) , x >. = <. (/) , ( 2nd ` y ) >. ) ) | 
						
							| 15 |  | eqcom |  |-  ( <. (/) , x >. = y <-> y = <. (/) , x >. ) | 
						
							| 16 |  | eqid |  |-  (/) = (/) | 
						
							| 17 |  | vex |  |-  x e. _V | 
						
							| 18 | 2 17 | opth |  |-  ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> ( (/) = (/) /\ x = ( 2nd ` y ) ) ) | 
						
							| 19 | 16 18 | mpbiran |  |-  ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) | 
						
							| 20 | 14 15 19 | 3bitr3g |  |-  ( y e. ( { (/) } X. _V ) -> ( y = <. (/) , x >. <-> x = ( 2nd ` y ) ) ) | 
						
							| 21 | 20 | bicomd |  |-  ( y e. ( { (/) } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) | 
						
							| 22 | 21 | ad2antll |  |-  ( ( T. /\ ( x e. _V /\ y e. ( { (/) } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) | 
						
							| 23 | 1 6 7 22 | f1o2d |  |-  ( T. -> inl : _V -1-1-onto-> ( { (/) } X. _V ) ) | 
						
							| 24 | 23 | mptru |  |-  inl : _V -1-1-onto-> ( { (/) } X. _V ) |