| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 2 | 1 | eleq2i |  |-  ( C e. ( A |_| B ) <-> C e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 3 |  | elun |  |-  ( C e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) <-> ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) ) | 
						
							| 4 | 2 3 | sylbb |  |-  ( C e. ( A |_| B ) -> ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) ) | 
						
							| 5 |  | xp2nd |  |-  ( C e. ( { (/) } X. A ) -> ( 2nd ` C ) e. A ) | 
						
							| 6 |  | 1st2nd2 |  |-  ( C e. ( { (/) } X. A ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) | 
						
							| 7 |  | xp1st |  |-  ( C e. ( { (/) } X. A ) -> ( 1st ` C ) e. { (/) } ) | 
						
							| 8 |  | elsni |  |-  ( ( 1st ` C ) e. { (/) } -> ( 1st ` C ) = (/) ) | 
						
							| 9 |  | opeq1 |  |-  ( ( 1st ` C ) = (/) -> <. ( 1st ` C ) , ( 2nd ` C ) >. = <. (/) , ( 2nd ` C ) >. ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( 1st ` C ) = (/) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. (/) , ( 2nd ` C ) >. ) ) | 
						
							| 11 | 7 8 10 | 3syl |  |-  ( C e. ( { (/) } X. A ) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. (/) , ( 2nd ` C ) >. ) ) | 
						
							| 12 | 6 11 | mpbid |  |-  ( C e. ( { (/) } X. A ) -> C = <. (/) , ( 2nd ` C ) >. ) | 
						
							| 13 |  | fvexd |  |-  ( C e. ( { (/) } X. A ) -> ( 2nd ` C ) e. _V ) | 
						
							| 14 |  | opex |  |-  <. (/) , ( 2nd ` C ) >. e. _V | 
						
							| 15 |  | opeq2 |  |-  ( y = ( 2nd ` C ) -> <. (/) , y >. = <. (/) , ( 2nd ` C ) >. ) | 
						
							| 16 |  | df-inl |  |-  inl = ( y e. _V |-> <. (/) , y >. ) | 
						
							| 17 | 15 16 | fvmptg |  |-  ( ( ( 2nd ` C ) e. _V /\ <. (/) , ( 2nd ` C ) >. e. _V ) -> ( inl ` ( 2nd ` C ) ) = <. (/) , ( 2nd ` C ) >. ) | 
						
							| 18 | 13 14 17 | sylancl |  |-  ( C e. ( { (/) } X. A ) -> ( inl ` ( 2nd ` C ) ) = <. (/) , ( 2nd ` C ) >. ) | 
						
							| 19 | 12 18 | eqtr4d |  |-  ( C e. ( { (/) } X. A ) -> C = ( inl ` ( 2nd ` C ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( x = ( 2nd ` C ) -> ( inl ` x ) = ( inl ` ( 2nd ` C ) ) ) | 
						
							| 21 | 20 | rspceeqv |  |-  ( ( ( 2nd ` C ) e. A /\ C = ( inl ` ( 2nd ` C ) ) ) -> E. x e. A C = ( inl ` x ) ) | 
						
							| 22 | 5 19 21 | syl2anc |  |-  ( C e. ( { (/) } X. A ) -> E. x e. A C = ( inl ` x ) ) | 
						
							| 23 |  | xp2nd |  |-  ( C e. ( { 1o } X. B ) -> ( 2nd ` C ) e. B ) | 
						
							| 24 |  | 1st2nd2 |  |-  ( C e. ( { 1o } X. B ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) | 
						
							| 25 |  | xp1st |  |-  ( C e. ( { 1o } X. B ) -> ( 1st ` C ) e. { 1o } ) | 
						
							| 26 |  | elsni |  |-  ( ( 1st ` C ) e. { 1o } -> ( 1st ` C ) = 1o ) | 
						
							| 27 |  | opeq1 |  |-  ( ( 1st ` C ) = 1o -> <. ( 1st ` C ) , ( 2nd ` C ) >. = <. 1o , ( 2nd ` C ) >. ) | 
						
							| 28 | 27 | eqeq2d |  |-  ( ( 1st ` C ) = 1o -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. 1o , ( 2nd ` C ) >. ) ) | 
						
							| 29 | 25 26 28 | 3syl |  |-  ( C e. ( { 1o } X. B ) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. 1o , ( 2nd ` C ) >. ) ) | 
						
							| 30 | 24 29 | mpbid |  |-  ( C e. ( { 1o } X. B ) -> C = <. 1o , ( 2nd ` C ) >. ) | 
						
							| 31 |  | fvexd |  |-  ( C e. ( { 1o } X. B ) -> ( 2nd ` C ) e. _V ) | 
						
							| 32 |  | opex |  |-  <. 1o , ( 2nd ` C ) >. e. _V | 
						
							| 33 |  | opeq2 |  |-  ( z = ( 2nd ` C ) -> <. 1o , z >. = <. 1o , ( 2nd ` C ) >. ) | 
						
							| 34 |  | df-inr |  |-  inr = ( z e. _V |-> <. 1o , z >. ) | 
						
							| 35 | 33 34 | fvmptg |  |-  ( ( ( 2nd ` C ) e. _V /\ <. 1o , ( 2nd ` C ) >. e. _V ) -> ( inr ` ( 2nd ` C ) ) = <. 1o , ( 2nd ` C ) >. ) | 
						
							| 36 | 31 32 35 | sylancl |  |-  ( C e. ( { 1o } X. B ) -> ( inr ` ( 2nd ` C ) ) = <. 1o , ( 2nd ` C ) >. ) | 
						
							| 37 | 30 36 | eqtr4d |  |-  ( C e. ( { 1o } X. B ) -> C = ( inr ` ( 2nd ` C ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( x = ( 2nd ` C ) -> ( inr ` x ) = ( inr ` ( 2nd ` C ) ) ) | 
						
							| 39 | 38 | rspceeqv |  |-  ( ( ( 2nd ` C ) e. B /\ C = ( inr ` ( 2nd ` C ) ) ) -> E. x e. B C = ( inr ` x ) ) | 
						
							| 40 | 23 37 39 | syl2anc |  |-  ( C e. ( { 1o } X. B ) -> E. x e. B C = ( inr ` x ) ) | 
						
							| 41 | 22 40 | orim12i |  |-  ( ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) -> ( E. x e. A C = ( inl ` x ) \/ E. x e. B C = ( inr ` x ) ) ) | 
						
							| 42 | 4 41 | syl |  |-  ( C e. ( A |_| B ) -> ( E. x e. A C = ( inl ` x ) \/ E. x e. B C = ( inr ` x ) ) ) |