Step |
Hyp |
Ref |
Expression |
1 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
2 |
1
|
eleq2i |
|- ( C e. ( A |_| B ) <-> C e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
3 |
|
elun |
|- ( C e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) <-> ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) ) |
4 |
2 3
|
sylbb |
|- ( C e. ( A |_| B ) -> ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) ) |
5 |
|
xp2nd |
|- ( C e. ( { (/) } X. A ) -> ( 2nd ` C ) e. A ) |
6 |
|
1st2nd2 |
|- ( C e. ( { (/) } X. A ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
7 |
|
xp1st |
|- ( C e. ( { (/) } X. A ) -> ( 1st ` C ) e. { (/) } ) |
8 |
|
elsni |
|- ( ( 1st ` C ) e. { (/) } -> ( 1st ` C ) = (/) ) |
9 |
|
opeq1 |
|- ( ( 1st ` C ) = (/) -> <. ( 1st ` C ) , ( 2nd ` C ) >. = <. (/) , ( 2nd ` C ) >. ) |
10 |
9
|
eqeq2d |
|- ( ( 1st ` C ) = (/) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. (/) , ( 2nd ` C ) >. ) ) |
11 |
7 8 10
|
3syl |
|- ( C e. ( { (/) } X. A ) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. (/) , ( 2nd ` C ) >. ) ) |
12 |
6 11
|
mpbid |
|- ( C e. ( { (/) } X. A ) -> C = <. (/) , ( 2nd ` C ) >. ) |
13 |
|
fvexd |
|- ( C e. ( { (/) } X. A ) -> ( 2nd ` C ) e. _V ) |
14 |
|
opex |
|- <. (/) , ( 2nd ` C ) >. e. _V |
15 |
|
opeq2 |
|- ( y = ( 2nd ` C ) -> <. (/) , y >. = <. (/) , ( 2nd ` C ) >. ) |
16 |
|
df-inl |
|- inl = ( y e. _V |-> <. (/) , y >. ) |
17 |
15 16
|
fvmptg |
|- ( ( ( 2nd ` C ) e. _V /\ <. (/) , ( 2nd ` C ) >. e. _V ) -> ( inl ` ( 2nd ` C ) ) = <. (/) , ( 2nd ` C ) >. ) |
18 |
13 14 17
|
sylancl |
|- ( C e. ( { (/) } X. A ) -> ( inl ` ( 2nd ` C ) ) = <. (/) , ( 2nd ` C ) >. ) |
19 |
12 18
|
eqtr4d |
|- ( C e. ( { (/) } X. A ) -> C = ( inl ` ( 2nd ` C ) ) ) |
20 |
|
fveq2 |
|- ( x = ( 2nd ` C ) -> ( inl ` x ) = ( inl ` ( 2nd ` C ) ) ) |
21 |
20
|
rspceeqv |
|- ( ( ( 2nd ` C ) e. A /\ C = ( inl ` ( 2nd ` C ) ) ) -> E. x e. A C = ( inl ` x ) ) |
22 |
5 19 21
|
syl2anc |
|- ( C e. ( { (/) } X. A ) -> E. x e. A C = ( inl ` x ) ) |
23 |
|
xp2nd |
|- ( C e. ( { 1o } X. B ) -> ( 2nd ` C ) e. B ) |
24 |
|
1st2nd2 |
|- ( C e. ( { 1o } X. B ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
25 |
|
xp1st |
|- ( C e. ( { 1o } X. B ) -> ( 1st ` C ) e. { 1o } ) |
26 |
|
elsni |
|- ( ( 1st ` C ) e. { 1o } -> ( 1st ` C ) = 1o ) |
27 |
|
opeq1 |
|- ( ( 1st ` C ) = 1o -> <. ( 1st ` C ) , ( 2nd ` C ) >. = <. 1o , ( 2nd ` C ) >. ) |
28 |
27
|
eqeq2d |
|- ( ( 1st ` C ) = 1o -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. 1o , ( 2nd ` C ) >. ) ) |
29 |
25 26 28
|
3syl |
|- ( C e. ( { 1o } X. B ) -> ( C = <. ( 1st ` C ) , ( 2nd ` C ) >. <-> C = <. 1o , ( 2nd ` C ) >. ) ) |
30 |
24 29
|
mpbid |
|- ( C e. ( { 1o } X. B ) -> C = <. 1o , ( 2nd ` C ) >. ) |
31 |
|
fvexd |
|- ( C e. ( { 1o } X. B ) -> ( 2nd ` C ) e. _V ) |
32 |
|
opex |
|- <. 1o , ( 2nd ` C ) >. e. _V |
33 |
|
opeq2 |
|- ( z = ( 2nd ` C ) -> <. 1o , z >. = <. 1o , ( 2nd ` C ) >. ) |
34 |
|
df-inr |
|- inr = ( z e. _V |-> <. 1o , z >. ) |
35 |
33 34
|
fvmptg |
|- ( ( ( 2nd ` C ) e. _V /\ <. 1o , ( 2nd ` C ) >. e. _V ) -> ( inr ` ( 2nd ` C ) ) = <. 1o , ( 2nd ` C ) >. ) |
36 |
31 32 35
|
sylancl |
|- ( C e. ( { 1o } X. B ) -> ( inr ` ( 2nd ` C ) ) = <. 1o , ( 2nd ` C ) >. ) |
37 |
30 36
|
eqtr4d |
|- ( C e. ( { 1o } X. B ) -> C = ( inr ` ( 2nd ` C ) ) ) |
38 |
|
fveq2 |
|- ( x = ( 2nd ` C ) -> ( inr ` x ) = ( inr ` ( 2nd ` C ) ) ) |
39 |
38
|
rspceeqv |
|- ( ( ( 2nd ` C ) e. B /\ C = ( inr ` ( 2nd ` C ) ) ) -> E. x e. B C = ( inr ` x ) ) |
40 |
23 37 39
|
syl2anc |
|- ( C e. ( { 1o } X. B ) -> E. x e. B C = ( inr ` x ) ) |
41 |
22 40
|
orim12i |
|- ( ( C e. ( { (/) } X. A ) \/ C e. ( { 1o } X. B ) ) -> ( E. x e. A C = ( inl ` x ) \/ E. x e. B C = ( inr ` x ) ) ) |
42 |
4 41
|
syl |
|- ( C e. ( A |_| B ) -> ( E. x e. A C = ( inl ` x ) \/ E. x e. B C = ( inr ` x ) ) ) |