Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( C e. B -> C e. _V ) |
2 |
|
1oex |
|- 1o e. _V |
3 |
2
|
snid |
|- 1o e. { 1o } |
4 |
|
opelxpi |
|- ( ( 1o e. { 1o } /\ C e. B ) -> <. 1o , C >. e. ( { 1o } X. B ) ) |
5 |
3 4
|
mpan |
|- ( C e. B -> <. 1o , C >. e. ( { 1o } X. B ) ) |
6 |
|
opeq2 |
|- ( x = C -> <. 1o , x >. = <. 1o , C >. ) |
7 |
|
df-inr |
|- inr = ( x e. _V |-> <. 1o , x >. ) |
8 |
6 7
|
fvmptg |
|- ( ( C e. _V /\ <. 1o , C >. e. ( { 1o } X. B ) ) -> ( inr ` C ) = <. 1o , C >. ) |
9 |
1 5 8
|
syl2anc |
|- ( C e. B -> ( inr ` C ) = <. 1o , C >. ) |
10 |
|
elun2 |
|- ( <. 1o , C >. e. ( { 1o } X. B ) -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
11 |
5 10
|
syl |
|- ( C e. B -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
12 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
13 |
11 12
|
eleqtrrdi |
|- ( C e. B -> <. 1o , C >. e. ( A |_| B ) ) |
14 |
9 13
|
eqeltrd |
|- ( C e. B -> ( inr ` C ) e. ( A |_| B ) ) |