| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( C e. B -> C e. _V ) | 
						
							| 2 |  | 1oex |  |-  1o e. _V | 
						
							| 3 | 2 | snid |  |-  1o e. { 1o } | 
						
							| 4 |  | opelxpi |  |-  ( ( 1o e. { 1o } /\ C e. B ) -> <. 1o , C >. e. ( { 1o } X. B ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( C e. B -> <. 1o , C >. e. ( { 1o } X. B ) ) | 
						
							| 6 |  | opeq2 |  |-  ( x = C -> <. 1o , x >. = <. 1o , C >. ) | 
						
							| 7 |  | df-inr |  |-  inr = ( x e. _V |-> <. 1o , x >. ) | 
						
							| 8 | 6 7 | fvmptg |  |-  ( ( C e. _V /\ <. 1o , C >. e. ( { 1o } X. B ) ) -> ( inr ` C ) = <. 1o , C >. ) | 
						
							| 9 | 1 5 8 | syl2anc |  |-  ( C e. B -> ( inr ` C ) = <. 1o , C >. ) | 
						
							| 10 |  | elun2 |  |-  ( <. 1o , C >. e. ( { 1o } X. B ) -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 11 | 5 10 | syl |  |-  ( C e. B -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 12 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 13 | 11 12 | eleqtrrdi |  |-  ( C e. B -> <. 1o , C >. e. ( A |_| B ) ) | 
						
							| 14 | 9 13 | eqeltrd |  |-  ( C e. B -> ( inr ` C ) e. ( A |_| B ) ) |