| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-inr |  |-  inr = ( x e. _V |-> <. 1o , x >. ) | 
						
							| 2 |  | 1onn |  |-  1o e. _om | 
						
							| 3 |  | snidg |  |-  ( 1o e. _om -> 1o e. { 1o } ) | 
						
							| 4 | 2 3 | ax-mp |  |-  1o e. { 1o } | 
						
							| 5 |  | opelxpi |  |-  ( ( 1o e. { 1o } /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) | 
						
							| 6 | 4 5 | mpan |  |-  ( x e. _V -> <. 1o , x >. e. ( { 1o } X. _V ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( T. /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) | 
						
							| 8 |  | fvexd |  |-  ( ( T. /\ y e. ( { 1o } X. _V ) ) -> ( 2nd ` y ) e. _V ) | 
						
							| 9 |  | 1st2nd2 |  |-  ( y e. ( { 1o } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) | 
						
							| 10 |  | xp1st |  |-  ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) e. { 1o } ) | 
						
							| 11 |  | elsni |  |-  ( ( 1st ` y ) e. { 1o } -> ( 1st ` y ) = 1o ) | 
						
							| 12 | 10 11 | syl |  |-  ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) = 1o ) | 
						
							| 13 | 12 | opeq1d |  |-  ( y e. ( { 1o } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. 1o , ( 2nd ` y ) >. ) | 
						
							| 14 | 9 13 | eqtrd |  |-  ( y e. ( { 1o } X. _V ) -> y = <. 1o , ( 2nd ` y ) >. ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( y e. ( { 1o } X. _V ) -> ( <. 1o , x >. = y <-> <. 1o , x >. = <. 1o , ( 2nd ` y ) >. ) ) | 
						
							| 16 |  | eqcom |  |-  ( <. 1o , x >. = y <-> y = <. 1o , x >. ) | 
						
							| 17 |  | eqid |  |-  1o = 1o | 
						
							| 18 |  | 1oex |  |-  1o e. _V | 
						
							| 19 |  | vex |  |-  x e. _V | 
						
							| 20 | 18 19 | opth |  |-  ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> ( 1o = 1o /\ x = ( 2nd ` y ) ) ) | 
						
							| 21 | 17 20 | mpbiran |  |-  ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) | 
						
							| 22 | 15 16 21 | 3bitr3g |  |-  ( y e. ( { 1o } X. _V ) -> ( y = <. 1o , x >. <-> x = ( 2nd ` y ) ) ) | 
						
							| 23 | 22 | bicomd |  |-  ( y e. ( { 1o } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) | 
						
							| 24 | 23 | ad2antll |  |-  ( ( T. /\ ( x e. _V /\ y e. ( { 1o } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) | 
						
							| 25 | 1 7 8 24 | f1o2d |  |-  ( T. -> inr : _V -1-1-onto-> ( { 1o } X. _V ) ) | 
						
							| 26 | 25 | mptru |  |-  inr : _V -1-1-onto-> ( { 1o } X. _V ) |