Metamath Proof Explorer


Theorem djussxp

Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Assertion djussxp
|- U_ x e. A ( { x } X. B ) C_ ( A X. _V )

Proof

Step Hyp Ref Expression
1 iunss
 |-  ( U_ x e. A ( { x } X. B ) C_ ( A X. _V ) <-> A. x e. A ( { x } X. B ) C_ ( A X. _V ) )
2 snssi
 |-  ( x e. A -> { x } C_ A )
3 ssv
 |-  B C_ _V
4 xpss12
 |-  ( ( { x } C_ A /\ B C_ _V ) -> ( { x } X. B ) C_ ( A X. _V ) )
5 2 3 4 sylancl
 |-  ( x e. A -> ( { x } X. B ) C_ ( A X. _V ) )
6 1 5 mprgbir
 |-  U_ x e. A ( { x } X. B ) C_ ( A X. _V )