| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elun |
|- ( x e. ( ( inl " A ) u. ( inr " B ) ) <-> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
| 2 |
|
djulf1o |
|- inl : _V -1-1-onto-> ( { (/) } X. _V ) |
| 3 |
|
f1ofn |
|- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl Fn _V ) |
| 4 |
2 3
|
ax-mp |
|- inl Fn _V |
| 5 |
|
ssv |
|- A C_ _V |
| 6 |
|
fvelimab |
|- ( ( inl Fn _V /\ A C_ _V ) -> ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) ) |
| 7 |
4 5 6
|
mp2an |
|- ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) |
| 8 |
7
|
biimpi |
|- ( x e. ( inl " A ) -> E. u e. A ( inl ` u ) = x ) |
| 9 |
|
simprr |
|- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) = x ) |
| 10 |
|
vex |
|- u e. _V |
| 11 |
|
opex |
|- <. (/) , u >. e. _V |
| 12 |
|
opeq2 |
|- ( z = u -> <. (/) , z >. = <. (/) , u >. ) |
| 13 |
|
df-inl |
|- inl = ( z e. _V |-> <. (/) , z >. ) |
| 14 |
12 13
|
fvmptg |
|- ( ( u e. _V /\ <. (/) , u >. e. _V ) -> ( inl ` u ) = <. (/) , u >. ) |
| 15 |
10 11 14
|
mp2an |
|- ( inl ` u ) = <. (/) , u >. |
| 16 |
|
0ex |
|- (/) e. _V |
| 17 |
16
|
snid |
|- (/) e. { (/) } |
| 18 |
|
opelxpi |
|- ( ( (/) e. { (/) } /\ u e. A ) -> <. (/) , u >. e. ( { (/) } X. A ) ) |
| 19 |
17 18
|
mpan |
|- ( u e. A -> <. (/) , u >. e. ( { (/) } X. A ) ) |
| 20 |
19
|
ad2antrl |
|- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> <. (/) , u >. e. ( { (/) } X. A ) ) |
| 21 |
15 20
|
eqeltrid |
|- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) e. ( { (/) } X. A ) ) |
| 22 |
9 21
|
eqeltrrd |
|- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> x e. ( { (/) } X. A ) ) |
| 23 |
8 22
|
rexlimddv |
|- ( x e. ( inl " A ) -> x e. ( { (/) } X. A ) ) |
| 24 |
|
elun1 |
|- ( x e. ( { (/) } X. A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 25 |
23 24
|
syl |
|- ( x e. ( inl " A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 26 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
| 27 |
25 26
|
eleqtrrdi |
|- ( x e. ( inl " A ) -> x e. ( A |_| B ) ) |
| 28 |
|
djurf1o |
|- inr : _V -1-1-onto-> ( { 1o } X. _V ) |
| 29 |
|
f1ofn |
|- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr Fn _V ) |
| 30 |
28 29
|
ax-mp |
|- inr Fn _V |
| 31 |
|
ssv |
|- B C_ _V |
| 32 |
|
fvelimab |
|- ( ( inr Fn _V /\ B C_ _V ) -> ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) ) |
| 33 |
30 31 32
|
mp2an |
|- ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) |
| 34 |
33
|
biimpi |
|- ( x e. ( inr " B ) -> E. u e. B ( inr ` u ) = x ) |
| 35 |
|
simprr |
|- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) = x ) |
| 36 |
|
opex |
|- <. 1o , u >. e. _V |
| 37 |
|
opeq2 |
|- ( z = u -> <. 1o , z >. = <. 1o , u >. ) |
| 38 |
|
df-inr |
|- inr = ( z e. _V |-> <. 1o , z >. ) |
| 39 |
37 38
|
fvmptg |
|- ( ( u e. _V /\ <. 1o , u >. e. _V ) -> ( inr ` u ) = <. 1o , u >. ) |
| 40 |
10 36 39
|
mp2an |
|- ( inr ` u ) = <. 1o , u >. |
| 41 |
|
1oex |
|- 1o e. _V |
| 42 |
41
|
snid |
|- 1o e. { 1o } |
| 43 |
|
opelxpi |
|- ( ( 1o e. { 1o } /\ u e. B ) -> <. 1o , u >. e. ( { 1o } X. B ) ) |
| 44 |
42 43
|
mpan |
|- ( u e. B -> <. 1o , u >. e. ( { 1o } X. B ) ) |
| 45 |
44
|
ad2antrl |
|- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> <. 1o , u >. e. ( { 1o } X. B ) ) |
| 46 |
40 45
|
eqeltrid |
|- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) e. ( { 1o } X. B ) ) |
| 47 |
35 46
|
eqeltrrd |
|- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> x e. ( { 1o } X. B ) ) |
| 48 |
34 47
|
rexlimddv |
|- ( x e. ( inr " B ) -> x e. ( { 1o } X. B ) ) |
| 49 |
|
elun2 |
|- ( x e. ( { 1o } X. B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 50 |
48 49
|
syl |
|- ( x e. ( inr " B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 51 |
50 26
|
eleqtrrdi |
|- ( x e. ( inr " B ) -> x e. ( A |_| B ) ) |
| 52 |
27 51
|
jaoi |
|- ( ( x e. ( inl " A ) \/ x e. ( inr " B ) ) -> x e. ( A |_| B ) ) |
| 53 |
1 52
|
sylbi |
|- ( x e. ( ( inl " A ) u. ( inr " B ) ) -> x e. ( A |_| B ) ) |
| 54 |
53
|
ssriv |
|- ( ( inl " A ) u. ( inr " B ) ) C_ ( A |_| B ) |
| 55 |
|
djur |
|- ( x e. ( A |_| B ) -> ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) ) |
| 56 |
|
vex |
|- y e. _V |
| 57 |
|
f1odm |
|- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> dom inl = _V ) |
| 58 |
2 57
|
ax-mp |
|- dom inl = _V |
| 59 |
56 58
|
eleqtrri |
|- y e. dom inl |
| 60 |
|
simpl |
|- ( ( y e. A /\ x = ( inl ` y ) ) -> y e. A ) |
| 61 |
13
|
funmpt2 |
|- Fun inl |
| 62 |
|
funfvima |
|- ( ( Fun inl /\ y e. dom inl ) -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) |
| 63 |
61 62
|
mpan |
|- ( y e. dom inl -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) |
| 64 |
59 60 63
|
mpsyl |
|- ( ( y e. A /\ x = ( inl ` y ) ) -> ( inl ` y ) e. ( inl " A ) ) |
| 65 |
|
eleq1 |
|- ( x = ( inl ` y ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) |
| 66 |
65
|
adantl |
|- ( ( y e. A /\ x = ( inl ` y ) ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) |
| 67 |
64 66
|
mpbird |
|- ( ( y e. A /\ x = ( inl ` y ) ) -> x e. ( inl " A ) ) |
| 68 |
67
|
rexlimiva |
|- ( E. y e. A x = ( inl ` y ) -> x e. ( inl " A ) ) |
| 69 |
|
f1odm |
|- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> dom inr = _V ) |
| 70 |
28 69
|
ax-mp |
|- dom inr = _V |
| 71 |
56 70
|
eleqtrri |
|- y e. dom inr |
| 72 |
|
simpl |
|- ( ( y e. B /\ x = ( inr ` y ) ) -> y e. B ) |
| 73 |
|
f1ofun |
|- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> Fun inr ) |
| 74 |
28 73
|
ax-mp |
|- Fun inr |
| 75 |
|
funfvima |
|- ( ( Fun inr /\ y e. dom inr ) -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) |
| 76 |
74 75
|
mpan |
|- ( y e. dom inr -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) |
| 77 |
71 72 76
|
mpsyl |
|- ( ( y e. B /\ x = ( inr ` y ) ) -> ( inr ` y ) e. ( inr " B ) ) |
| 78 |
|
eleq1 |
|- ( x = ( inr ` y ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) |
| 79 |
78
|
adantl |
|- ( ( y e. B /\ x = ( inr ` y ) ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) |
| 80 |
77 79
|
mpbird |
|- ( ( y e. B /\ x = ( inr ` y ) ) -> x e. ( inr " B ) ) |
| 81 |
80
|
rexlimiva |
|- ( E. y e. B x = ( inr ` y ) -> x e. ( inr " B ) ) |
| 82 |
68 81
|
orim12i |
|- ( ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
| 83 |
55 82
|
syl |
|- ( x e. ( A |_| B ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
| 84 |
83 1
|
sylibr |
|- ( x e. ( A |_| B ) -> x e. ( ( inl " A ) u. ( inr " B ) ) ) |
| 85 |
84
|
ssriv |
|- ( A |_| B ) C_ ( ( inl " A ) u. ( inr " B ) ) |
| 86 |
54 85
|
eqssi |
|- ( ( inl " A ) u. ( inr " B ) ) = ( A |_| B ) |