| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 |  | relsdom |  |-  Rel ~< | 
						
							| 4 | 3 | brrelex2i |  |-  ( 1o ~< A -> A e. _V ) | 
						
							| 5 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 6 | 2 4 5 | sylancr |  |-  ( 1o ~< A -> ( { (/) } X. A ) ~~ A ) | 
						
							| 7 |  | sdomen2 |  |-  ( ( { (/) } X. A ) ~~ A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( 1o ~< A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) | 
						
							| 9 | 8 | ibir |  |-  ( 1o ~< A -> 1o ~< ( { (/) } X. A ) ) | 
						
							| 10 |  | 1on |  |-  1o e. On | 
						
							| 11 | 3 | brrelex2i |  |-  ( 1o ~< B -> B e. _V ) | 
						
							| 12 |  | xpsnen2g |  |-  ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( 1o ~< B -> ( { 1o } X. B ) ~~ B ) | 
						
							| 14 |  | sdomen2 |  |-  ( ( { 1o } X. B ) ~~ B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( 1o ~< B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) | 
						
							| 16 | 15 | ibir |  |-  ( 1o ~< B -> 1o ~< ( { 1o } X. B ) ) | 
						
							| 17 |  | unxpdom |  |-  ( ( 1o ~< ( { (/) } X. A ) /\ 1o ~< ( { 1o } X. B ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) | 
						
							| 18 | 9 16 17 | syl2an |  |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) | 
						
							| 19 | 1 18 | eqbrtrid |  |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) | 
						
							| 20 |  | xpen |  |-  ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) | 
						
							| 21 | 6 13 20 | syl2an |  |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) | 
						
							| 22 |  | domentr |  |-  ( ( ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) -> ( A |_| B ) ~<_ ( A X. B ) ) | 
						
							| 23 | 19 21 22 | syl2anc |  |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( A X. B ) ) |