Step |
Hyp |
Ref |
Expression |
1 |
|
dlatjmdi.b |
|- B = ( Base ` K ) |
2 |
|
dlatjmdi.j |
|- .\/ = ( join ` K ) |
3 |
|
dlatjmdi.m |
|- ./\ = ( meet ` K ) |
4 |
|
eqid |
|- ( ODual ` K ) = ( ODual ` K ) |
5 |
4
|
odudlatb |
|- ( K e. DLat -> ( K e. DLat <-> ( ODual ` K ) e. DLat ) ) |
6 |
5
|
ibi |
|- ( K e. DLat -> ( ODual ` K ) e. DLat ) |
7 |
4 1
|
odubas |
|- B = ( Base ` ( ODual ` K ) ) |
8 |
4 3
|
odujoin |
|- ./\ = ( join ` ( ODual ` K ) ) |
9 |
4 2
|
odumeet |
|- .\/ = ( meet ` ( ODual ` K ) ) |
10 |
7 8 9
|
dlatmjdi |
|- ( ( ( ODual ` K ) e. DLat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y ./\ Z ) ) = ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) ) |
11 |
6 10
|
sylan |
|- ( ( K e. DLat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y ./\ Z ) ) = ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) ) |