Step |
Hyp |
Ref |
Expression |
1 |
|
isdlat.b |
|- B = ( Base ` K ) |
2 |
|
isdlat.j |
|- .\/ = ( join ` K ) |
3 |
|
isdlat.m |
|- ./\ = ( meet ` K ) |
4 |
1 2 3
|
isdlat |
|- ( K e. DLat <-> ( K e. Lat /\ A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |
5 |
4
|
simprbi |
|- ( K e. DLat -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
6 |
|
oveq1 |
|- ( x = X -> ( x ./\ ( y .\/ z ) ) = ( X ./\ ( y .\/ z ) ) ) |
7 |
|
oveq1 |
|- ( x = X -> ( x ./\ y ) = ( X ./\ y ) ) |
8 |
|
oveq1 |
|- ( x = X -> ( x ./\ z ) = ( X ./\ z ) ) |
9 |
7 8
|
oveq12d |
|- ( x = X -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) ) |
10 |
6 9
|
eqeq12d |
|- ( x = X -> ( ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) <-> ( X ./\ ( y .\/ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) ) ) |
11 |
|
oveq1 |
|- ( y = Y -> ( y .\/ z ) = ( Y .\/ z ) ) |
12 |
11
|
oveq2d |
|- ( y = Y -> ( X ./\ ( y .\/ z ) ) = ( X ./\ ( Y .\/ z ) ) ) |
13 |
|
oveq2 |
|- ( y = Y -> ( X ./\ y ) = ( X ./\ Y ) ) |
14 |
13
|
oveq1d |
|- ( y = Y -> ( ( X ./\ y ) .\/ ( X ./\ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( y = Y -> ( ( X ./\ ( y .\/ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) <-> ( X ./\ ( Y .\/ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) ) ) |
16 |
|
oveq2 |
|- ( z = Z -> ( Y .\/ z ) = ( Y .\/ Z ) ) |
17 |
16
|
oveq2d |
|- ( z = Z -> ( X ./\ ( Y .\/ z ) ) = ( X ./\ ( Y .\/ Z ) ) ) |
18 |
|
oveq2 |
|- ( z = Z -> ( X ./\ z ) = ( X ./\ Z ) ) |
19 |
18
|
oveq2d |
|- ( z = Z -> ( ( X ./\ Y ) .\/ ( X ./\ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |
20 |
17 19
|
eqeq12d |
|- ( z = Z -> ( ( X ./\ ( Y .\/ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) <-> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) |
21 |
10 15 20
|
rspc3v |
|- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) |
22 |
5 21
|
mpan9 |
|- ( ( K e. DLat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |