Step |
Hyp |
Ref |
Expression |
1 |
|
dlwwlknondlwlknonbij.v |
|- V = ( Vtx ` G ) |
2 |
|
dlwwlknondlwlknonbij.w |
|- W = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } |
3 |
|
dlwwlknondlwlknonbij.d |
|- D = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } |
4 |
|
fvex |
|- ( ClWalks ` G ) e. _V |
5 |
2 4
|
rabex2 |
|- W e. _V |
6 |
|
ovex |
|- ( X ( ClWWalksNOn ` G ) N ) e. _V |
7 |
3 6
|
rabex2 |
|- D e. _V |
8 |
|
eqid |
|- ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) |
9 |
1 2 3 8
|
dlwwlknondlwlknonf1o |
|- ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D ) |
10 |
|
f1oen2g |
|- ( ( W e. _V /\ D e. _V /\ ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D ) -> W ~~ D ) |
11 |
5 7 9 10
|
mp3an12i |
|- ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> W ~~ D ) |