Metamath Proof Explorer


Theorem dm0

Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of Monk1 p. 36. (Contributed by NM, 4-Jul-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dm0
|- dom (/) = (/)

Proof

Step Hyp Ref Expression
1 noel
 |-  -. <. x , y >. e. (/)
2 1 nex
 |-  -. E. y <. x , y >. e. (/)
3 vex
 |-  x e. _V
4 3 eldm2
 |-  ( x e. dom (/) <-> E. y <. x , y >. e. (/) )
5 2 4 mtbir
 |-  -. x e. dom (/)
6 5 nel0
 |-  dom (/) = (/)