Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of Monk1 p. 36. (Contributed by NM, 4-Jul-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dm0 | |- dom (/) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel | |- -. <. x , y >. e. (/) |
|
2 | 1 | nex | |- -. E. y <. x , y >. e. (/) |
3 | vex | |- x e. _V |
|
4 | 3 | eldm2 | |- ( x e. dom (/) <-> E. y <. x , y >. e. (/) ) |
5 | 2 4 | mtbir | |- -. x e. dom (/) |
6 | 5 | nel0 | |- dom (/) = (/) |