Metamath Proof Explorer


Theorem dmadjop

Description: A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjop
|- ( T e. dom adjh -> T : ~H --> ~H )

Proof

Step Hyp Ref Expression
1 dmadjss
 |-  dom adjh C_ ( ~H ^m ~H )
2 1 sseli
 |-  ( T e. dom adjh -> T e. ( ~H ^m ~H ) )
3 ax-hilex
 |-  ~H e. _V
4 3 3 elmap
 |-  ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H )
5 2 4 sylib
 |-  ( T e. dom adjh -> T : ~H --> ~H )