Metamath Proof Explorer


Theorem dmadjrn

Description: The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjrn
|- ( T e. dom adjh -> ( adjh ` T ) e. dom adjh )

Proof

Step Hyp Ref Expression
1 adj1o
 |-  adjh : dom adjh -1-1-onto-> dom adjh
2 f1of
 |-  ( adjh : dom adjh -1-1-onto-> dom adjh -> adjh : dom adjh --> dom adjh )
3 1 2 ax-mp
 |-  adjh : dom adjh --> dom adjh
4 3 ffvelrni
 |-  ( T e. dom adjh -> ( adjh ` T ) e. dom adjh )