Step |
Hyp |
Ref |
Expression |
1 |
|
dmadjrn |
|- ( T e. dom adjh -> ( adjh ` T ) e. dom adjh ) |
2 |
|
ax-hv0cl |
|- 0h e. ~H |
3 |
2
|
n0ii |
|- -. ~H = (/) |
4 |
|
eqcom |
|- ( (/) = ~H <-> ~H = (/) ) |
5 |
3 4
|
mtbir |
|- -. (/) = ~H |
6 |
|
dm0 |
|- dom (/) = (/) |
7 |
6
|
eqeq1i |
|- ( dom (/) = ~H <-> (/) = ~H ) |
8 |
5 7
|
mtbir |
|- -. dom (/) = ~H |
9 |
|
fdm |
|- ( (/) : ~H --> ~H -> dom (/) = ~H ) |
10 |
8 9
|
mto |
|- -. (/) : ~H --> ~H |
11 |
|
dmadjop |
|- ( (/) e. dom adjh -> (/) : ~H --> ~H ) |
12 |
10 11
|
mto |
|- -. (/) e. dom adjh |
13 |
|
ndmfv |
|- ( -. T e. dom adjh -> ( adjh ` T ) = (/) ) |
14 |
13
|
eleq1d |
|- ( -. T e. dom adjh -> ( ( adjh ` T ) e. dom adjh <-> (/) e. dom adjh ) ) |
15 |
12 14
|
mtbiri |
|- ( -. T e. dom adjh -> -. ( adjh ` T ) e. dom adjh ) |
16 |
15
|
con4i |
|- ( ( adjh ` T ) e. dom adjh -> T e. dom adjh ) |
17 |
1 16
|
impbii |
|- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |