Metamath Proof Explorer


Theorem dmatel

Description: A N x N diagonal matrix over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a
|- A = ( N Mat R )
dmatval.b
|- B = ( Base ` A )
dmatval.0
|- .0. = ( 0g ` R )
dmatval.d
|- D = ( N DMat R )
Assertion dmatel
|- ( ( N e. Fin /\ R e. V ) -> ( M e. D <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) )

Proof

Step Hyp Ref Expression
1 dmatval.a
 |-  A = ( N Mat R )
2 dmatval.b
 |-  B = ( Base ` A )
3 dmatval.0
 |-  .0. = ( 0g ` R )
4 dmatval.d
 |-  D = ( N DMat R )
5 1 2 3 4 dmatval
 |-  ( ( N e. Fin /\ R e. V ) -> D = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } )
6 5 eleq2d
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. D <-> M e. { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) )
7 oveq
 |-  ( m = M -> ( i m j ) = ( i M j ) )
8 7 eqeq1d
 |-  ( m = M -> ( ( i m j ) = .0. <-> ( i M j ) = .0. ) )
9 8 imbi2d
 |-  ( m = M -> ( ( i =/= j -> ( i m j ) = .0. ) <-> ( i =/= j -> ( i M j ) = .0. ) ) )
10 9 2ralbidv
 |-  ( m = M -> ( A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) <-> A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) )
11 10 elrab
 |-  ( M e. { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) )
12 6 11 bitrdi
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. D <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) )