Step |
Hyp |
Ref |
Expression |
1 |
|
dmatid.a |
|- A = ( N Mat R ) |
2 |
|
dmatid.b |
|- B = ( Base ` A ) |
3 |
|
dmatid.0 |
|- .0. = ( 0g ` R ) |
4 |
|
dmatid.d |
|- D = ( N DMat R ) |
5 |
1 2 3 4
|
dmatel |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. D <-> ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) ) ) |
6 |
|
neeq1 |
|- ( i = I -> ( i =/= j <-> I =/= j ) ) |
7 |
|
oveq1 |
|- ( i = I -> ( i X j ) = ( I X j ) ) |
8 |
7
|
eqeq1d |
|- ( i = I -> ( ( i X j ) = .0. <-> ( I X j ) = .0. ) ) |
9 |
6 8
|
imbi12d |
|- ( i = I -> ( ( i =/= j -> ( i X j ) = .0. ) <-> ( I =/= j -> ( I X j ) = .0. ) ) ) |
10 |
|
neeq2 |
|- ( j = J -> ( I =/= j <-> I =/= J ) ) |
11 |
|
oveq2 |
|- ( j = J -> ( I X j ) = ( I X J ) ) |
12 |
11
|
eqeq1d |
|- ( j = J -> ( ( I X j ) = .0. <-> ( I X J ) = .0. ) ) |
13 |
10 12
|
imbi12d |
|- ( j = J -> ( ( I =/= j -> ( I X j ) = .0. ) <-> ( I =/= J -> ( I X J ) = .0. ) ) ) |
14 |
9 13
|
rspc2v |
|- ( ( I e. N /\ J e. N ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I =/= J -> ( I X J ) = .0. ) ) ) |
15 |
14
|
com23 |
|- ( ( I e. N /\ J e. N ) -> ( I =/= J -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) ) |
16 |
15
|
3impia |
|- ( ( I e. N /\ J e. N /\ I =/= J ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) |
17 |
16
|
com12 |
|- ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) |
18 |
17
|
2a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. B -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) ) |
19 |
18
|
impd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) |
20 |
5 19
|
sylbid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. D -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) |
21 |
20
|
3impia |
|- ( ( N e. Fin /\ R e. Ring /\ X e. D ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) |
22 |
21
|
imp |
|- ( ( ( N e. Fin /\ R e. Ring /\ X e. D ) /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( I X J ) = .0. ) |