| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatval.a |
|- A = ( N Mat R ) |
| 2 |
|
dmatval.b |
|- B = ( Base ` A ) |
| 3 |
|
dmatval.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
dmatval.d |
|- D = ( N DMat R ) |
| 5 |
|
df-dmat |
|- DMat = ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) |
| 6 |
5
|
a1i |
|- ( ( N e. Fin /\ R e. V ) -> DMat = ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) ) |
| 7 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
| 8 |
7
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` ( N Mat R ) ) ) |
| 9 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 10 |
2 9
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
| 11 |
8 10
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
| 12 |
|
simpl |
|- ( ( n = N /\ r = R ) -> n = N ) |
| 13 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
| 14 |
13 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
| 15 |
14
|
adantl |
|- ( ( n = N /\ r = R ) -> ( 0g ` r ) = .0. ) |
| 16 |
15
|
eqeq2d |
|- ( ( n = N /\ r = R ) -> ( ( i m j ) = ( 0g ` r ) <-> ( i m j ) = .0. ) ) |
| 17 |
16
|
imbi2d |
|- ( ( n = N /\ r = R ) -> ( ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 18 |
12 17
|
raleqbidv |
|- ( ( n = N /\ r = R ) -> ( A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 19 |
12 18
|
raleqbidv |
|- ( ( n = N /\ r = R ) -> ( A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) <-> A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) ) ) |
| 20 |
11 19
|
rabeqbidv |
|- ( ( n = N /\ r = R ) -> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
| 21 |
20
|
adantl |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
| 22 |
|
simpl |
|- ( ( N e. Fin /\ R e. V ) -> N e. Fin ) |
| 23 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 24 |
23
|
adantl |
|- ( ( N e. Fin /\ R e. V ) -> R e. _V ) |
| 25 |
2
|
fvexi |
|- B e. _V |
| 26 |
|
rabexg |
|- ( B e. _V -> { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } e. _V ) |
| 27 |
25 26
|
mp1i |
|- ( ( N e. Fin /\ R e. V ) -> { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } e. _V ) |
| 28 |
6 21 22 24 27
|
ovmpod |
|- ( ( N e. Fin /\ R e. V ) -> ( N DMat R ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
| 29 |
4 28
|
eqtrid |
|- ( ( N e. Fin /\ R e. V ) -> D = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |